generated from sib-swiss/course_website_template
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
jeitziner
committed
Feb 9, 2023
1 parent
ee85a2b
commit 633b6ef
Showing
2 changed files
with
228 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
|
||
##################### | ||
## Morning | ||
##################### | ||
|
||
############ | ||
### PCA exercise | ||
############ | ||
|
||
### open the data | ||
|
||
data(iris) | ||
iris | ||
head(iris) | ||
summary(iris) | ||
boxplot(iris[, 1:4]) | ||
pairs(iris[,1:4], col = iris$Species, pch = 19) | ||
boxplot(iris$Petal.Width ~ iris$Species) | ||
?prcomp | ||
pca.iris.cov = prcomp(iris[, 1:4], center = TRUE, scale. = FALSE) | ||
plot(pca.iris.cov$sdev,type="l") | ||
|
||
plot(pca.iris.cov$x, col = iris$Species, pch = 19) | ||
|
||
|
||
pca.iris.cov_nc = prcomp(iris[, 1:4],center=FALSE, scale. = TRUE) | ||
plot(pca.iris.cov_nc$x, col = iris$Species, pch = 19) | ||
|
||
pca.iris.cov_nc_ns = prcomp(iris[, 1:4],center=FALSE, scale. = FALSE) | ||
plot(pca.iris.cov_nc_ns$x, col = iris$Species, pch = 19) | ||
|
||
pca.iris.cov_c_s = prcomp(iris[, 1:4],center=TRUE, scale. = TRUE) | ||
plot(pca.iris.cov_c_s$x, col = iris$Species, pch = 19) | ||
legend("bottomright", fill = unique(iris$Species), | ||
legend = c( levels(iris$Species))) | ||
|
||
pca.iris.cov$rotation | ||
summary(pca.iris.cov) | ||
biplot(pca.iris.cov, scale = 0) | ||
summary(iris) | ||
# iris.centered_scaled = scale(iris[, 1:4], center = TRUE, scale = TRUE) # compute linear combination | ||
iris.centered = scale(iris[, 1:4], center = TRUE, scale = FALSE) # compute linear combination | ||
# summary(iris.centered_scaled) | ||
summary(iris.centered) | ||
scores.sample1 = iris.centered[1, ] %*% pca.iris.cov$rotation # compare to PCA scores | ||
pca.iris.cov$x[1, ]/scores.sample1 | ||
|
||
?prcomp | ||
|
||
var(iris[, 1:4]) | ||
|
||
|
||
pca.iris.corr = prcomp(iris[, 1:4], center = TRUE, scale. = TRUE) | ||
plot(pca.iris.corr$x, col = iris$Species, pch = 16) | ||
pca.iris.corr$rotation | ||
summary(pca.iris.corr) | ||
biplot(pca.iris.corr, scale = 0) | ||
|
||
|
||
par(mfrow = c(1, 2)) | ||
screeplot(pca.iris.cov, type = "line") | ||
screeplot(pca.iris.corr, type = "line") | ||
|
||
|
||
source("https://bioconductor.org/biocLite.R") | ||
biocLite("GEOquery") | ||
library(GEOquery) ## Retrieve the data from GEO | ||
gds <- getGEO("GDS5093") ## If you have already downloaded the data, you can load the soft file directly ## gds <- getGEO("GDS5093.soft.gz") ## Look at the elements of the downloaded data | ||
head(Columns(gds)) | ||
head(Table(gds)) | ||
head(Meta(gds)) ## Convert the gds object to an expression set | ||
eset <- GDS2eSet(gds) | ||
eset[1:3,1:3] | ||
|
||
pca <- prcomp(t(exprs(eset)), scale. = TRUE) | ||
?prcomp | ||
##centering? | ||
plot(pca$x, pch = 19, cex = 2) | ||
plot(pca) | ||
round(pca$sdev^2/sum(pca$sdev^2),2) | ||
plot(pca$x, pch = 19, cex = 2, col = factor(pData(eset)$disease.state)) | ||
legend("topright", legend = levels(factor(pData(eset)$disease.state)), col = 1:4, pch = 19) | ||
|
||
|
||
vars <- apply(exprs(eset), 1, var) | ||
head(vars) | ||
vars.order <- order(vars, decreasing = TRUE) | ||
head(vars.order) | ||
pca.5000 <- prcomp(t(exprs(eset)[vars.order[1:5000], ]), scale. = TRUE) | ||
plot(pca.5000$x, pch = 19, cex = 2, col = factor(pData(eset)$disease.state)) | ||
legend("topright", legend = levels(factor(pData(eset)$disease.state)), col = 1:4, pch = 19) | ||
pca.100 <- prcomp(t(exprs(eset)[vars.order[1:100], ]), scale. = TRUE) | ||
plot(pca.100$x, pch = 19, cex = 2, col = factor(pData(eset)$disease.state)) | ||
legend("topright", legend = levels(factor(pData(eset)$disease.state)), col = 1:4, pch = 19) | ||
|
||
plot(pca.100$x, pch = 19, cex = 2, col = factor(pData(eset)$infection)) | ||
|
||
pc2.weights <- data.frame(pca.100$rotation[, 2, drop = FALSE]) | ||
pc2.weights$ChromosomeLoc <- fData(eset)[rownames(pc2.weights), "Chromosome location"] | ||
|
||
head(pc2.weights[order(pc2.weights$PC2), ]) | ||
tail(pc2.weights[order(pc2.weights$PC2), ]) | ||
|
||
|
||
|
||
##################### | ||
## Afternooon | ||
##################### | ||
###### | ||
### Afternoon exercise | ||
###### | ||
|
||
|
||
library(golubEsets) | ||
data(Golub_Train) | ||
golub.expr = exprs(Golub_Train) | ||
golub.sample.annot = Golub_Train$ALL.AML | ||
dim(golub.expr) | ||
head(golub.expr[,1:3]) | ||
summary(golub.expr) | ||
head(golub.expr) | ||
pca.golub.cov = prcomp(t(golub.expr), center = TRUE, scale. = FALSE) | ||
plot(pca.golub.cov$x[, 1:2], col = golub.sample.annot, pch = 19) | ||
legend("topleft",legend=levels(factor(golub.sample.annot)),col=1:2,pch=20) | ||
|
||
pca.golub.corr = prcomp(t(golub.expr), center = TRUE, scale. = TRUE) | ||
plot(pca.golub.corr$x[, 1:2], col = golub.sample.annot, pch = 19) | ||
|
||
golub.expr.filtered = golub.expr[order(apply(golub.expr, 1, var), decreasing = TRUE)[1:1000], ] | ||
pca.golub.filtered.corr = prcomp(t(golub.expr.filtered), center = TRUE, scale. = TRUE) | ||
plot(pca.golub.filtered.corr$x[, 1:2], col = golub.sample.annot, pch = 19) | ||
|
||
library(mclust) | ||
data(banknote) | ||
summary(banknote) | ||
|
||
banknote.df <- banknote[,-1] | ||
summary(banknote.df) | ||
|
||
pca.banknote = prcomp(banknote[, 2:7], center = TRUE, scale. = TRUE) | ||
summary(pca.banknote) | ||
|
||
plot(pca.banknote$x[, 1:2], col = factor(banknote[,1]), pch = 19) | ||
arrows(0, 0, 2*pca.banknote$rotation[, 1], 2*pca.banknote$rotation[, 2], col = "red", angle = 20, length = 0.1) | ||
text(2.4*pca.banknote$rotation[, 1:2], colnames(banknote[, 2:7]), col = "red") | ||
|
||
par(mfrow = c(2, 3)) | ||
for (v in c("Length", "Left", "Right", "Bottom", "Top", "Diagonal")) { boxplot(banknote[, v] ~ banknote[, "Status"], xlab = "Banknote status", ylab = v) } | ||
|
||
|
||
#Points in plates-continuous | ||
|
||
library("cluster") | ||
mydata1<-read.csv("dataClustering.csv") | ||
df<-data.frame(mydata1$Coord_X ,mydata1$Coord_Y ) | ||
colnames(df) <- c("X", "Y") | ||
plot(df$X, df$Y, pch=20) | ||
|
||
|
||
|
||
#evaluate Euclidian distance and display distance matrix | ||
df.dist<-dist(df) | ||
# classify | ||
df.h<-hclust(df.dist,"ave") | ||
plot(df.h) | ||
|
||
colorScale <- colorRampPalette(c("blue", "green","yellow","red","darkred"))(1000) | ||
heatmap(as.matrix(df.dist),Colv=NA, Rowv=NA, scale="none", col=colorScale) | ||
|
||
#KMEANS | ||
kmeans(df,3) | ||
|
||
cl.1 <- kmeans(df, 3, iter.max = 1) | ||
plot(df, col = cl.1$cluster) | ||
points(cl.1$centers, col = 1:5, pch = 8) | ||
|
||
|
||
kmeans(df,3) | ||
|
||
cl.1 <- kmeans(df, 3, iter.max = 1) | ||
plot(df, col = cl.1$cluster) | ||
points(cl.1$centers, col = 1:5, pch = 8) | ||
|
||
cl.10 <- kmeans(df, 3, iter.max = 10) | ||
plot(df, col = cl.10$cluster) | ||
points(cl.10$centers, col = 1:5, pch = 8) | ||
|
||
cl.100 <- kmeans(df, 3, iter.max = 100) | ||
plot(df, col = cl.100$cluster) | ||
points(cl.100$centers, col = 1:5, pch = 8) | ||
|
||
|
||
|
||
#CMEANS | ||
install.packages("e1071") | ||
library(e1071) | ||
cmeans(df,3) | ||
|
||
cl.1 <- cmeans(df, 3, iter.max = 1) | ||
plot(df, col = cl.1$cluster) | ||
points(cl.1$centers, col = 1:5, pch = 8) | ||
|
||
cl.10 <- cmeans(df, 3, iter.max = 10) | ||
plot(df, col = cl.10$cluster) | ||
points(cl.10$centers, col = 1:5, pch = 8) | ||
|
||
cl.100 <- cmeans(df, 3, iter.max = 100) | ||
plot(df, col = cl.100$cluster) | ||
points(cl.100$centers, col = 1:5, pch = 8) | ||
|
||
|
||
|
||
#MCLUST | ||
library("mclust") | ||
BIC <- mclustBIC(df) | ||
plot(BIC) | ||
summary(BIC) | ||
mod1 <- Mclust(df, x = BIC) | ||
summary(mod1, parameters = TRUE) | ||
plot(mod1, what = "classification") | ||
|
||
mod2 <- Mclust(df, modelName = c("VEE")) | ||
plot(mod2, what = "classification") | ||
|
||
mod3 <- Mclust(df, modelName = "EEE",G=9) | ||
plot(mod3, what = "classification") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters