Project aim
: The aim of the project includes the following:
- Training a house price prediction
Regression model
- Creating a simple
flask app
to makepredictions
based on user inputs Dockerizing
it- Creating a
github actions
Deploying
it onHeroku
cloud
Project requirements
: python, pandas, numpy, flask, scikit-learn and docker
Tools used
: VS Code and Linux CLI
- Create a new environment for the project
conda create -p venv python==3.7 -y
-
Activate the environment
conda activate venv/
-
Create a requirements.txt file
run pip install -r requirements.txt
-
Create flask based application
- Creating a home template
home.html
- Added a form based input and prediction api
-
Create a github repository and push all files
-
Deploying it to heroku cloud
- Deploy using github repo option
- Docker based Deployment
- Create a
Procfile
- Create a
Dockerfile
- Creating github actions CI/CD pipeline
- Create a .github/workflows directory
- Add a github action main.yaml file
- Push files to github and deploy the container on Heroku cloud
Application link
: House Price Prediction Application