-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
37 lines (31 loc) · 1.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pickle
from unittest import registerResult
from flask import Flask, request,app,jsonify,url_for,render_template
import numpy as np
import pandas as pd
import json
app = Flask(__name__)
## Load model
regmodel = pickle.load(open("regmodel.pkl", "rb"))
scalar = pickle.load(open("scaling.pkl", "rb"))
@app.route('/')
def home():
return render_template("home.html")
@app.route('/predict_api', methods = ["POST"])
def predict_api():
data = request.json['data']
print(data)
print(np.array(list(data.values())).reshape(1, -1))
new_data = scalar.transform(np.array(list(data.values())).reshape(1, -1))
output = regmodel.predict(new_data)
print(output[0])
return jsonify(output[0])
@app.route('/predict', methods = ["POST"])
def predict():
data = [float(x) for x in request.form.values()]
final_input = scalar.transform(np.array(data).reshape(1,-1))
print(final_input)
output = regmodel.predict(final_input)[0]
return render_template("home.html", prediction_text = f"The house price prediction is {output}")
if __name__ == "__main__":
app.run(debug = True)