Skip to content

Commit

Permalink
kill a sorry
Browse files Browse the repository at this point in the history
  • Loading branch information
riccardobrasca committed Dec 4, 2023
1 parent b46cd00 commit 114ebe3
Showing 1 changed file with 17 additions and 4 deletions.
21 changes: 17 additions & 4 deletions FltRegular/NumberTheory/Hilbert92.lean
Original file line number Diff line number Diff line change
Expand Up @@ -754,10 +754,23 @@ lemma Hilbert92ish (hp : Nat.Prime p)
(hKL : finrank k K = p) (σ : K ≃ₐ[k] K) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) :
∃ η : (𝓞 K)ˣ, Algebra.norm k (η : K) = 1 ∧ ∀ ε : (𝓞 K)ˣ, (η : K) ≠ ε / (σ ε : K) := by
obtain ⟨h, ζ, hζ⟩ := h_exists' p (k := k) hp
by_cases H : ∀ ε : (𝓞 K)ˣ, (algebraMap k K ζ^((p : ℤ)^(h-1))) ≠ ε / (σ ε : K)


sorry
by_cases H : ∀ ε : (𝓞 K)ˣ, (algebraMap k K ζ^((p : ℕ)^(h-1))) ≠ ε / (σ ε : K)
· let η := (Units.map (algebraMap (𝓞 k) (𝓞 K)) ζ : (𝓞 K)ˣ)
use η ^ ((p : ℕ) ^ (h - 1))
constructor
· simp only [ge_iff_le, Units.val_pow_eq_pow_val, Units.coe_map,
MonoidHom.coe_coe, SubmonoidClass.coe_pow, map_pow]
show (Algebra.norm k) ((algebraMap k K) _) ^ _ = 1
rw [Algebra.norm_algebraMap, hKL, ← pow_mul]
nth_rewrite 1 [← pow_one (p : ℕ)]
rw [← pow_add]
apply (hζ.1.pow_eq_one_iff_dvd _).2
cases h <;> simp [add_comm]
· intro ε hε
apply H ε
rw [← hε]
simp
rfl
simp only [ne_eq, not_forall, not_not] at H
obtain ⟨E, hE⟩ := H
let NE := Units.map (RingOfIntegers.norm k) E
Expand Down

0 comments on commit 114ebe3

Please sign in to comment.