Skip to content

Commit

Permalink
zeta fix
Browse files Browse the repository at this point in the history
  • Loading branch information
CBirkbeck committed Dec 4, 2023
1 parent a466e0c commit b46cd00
Showing 1 changed file with 8 additions and 2 deletions.
10 changes: 8 additions & 2 deletions FltRegular/NumberTheory/Hilbert92.lean
Original file line number Diff line number Diff line change
Expand Up @@ -754,13 +754,18 @@ lemma Hilbert92ish (hp : Nat.Prime p)
(hKL : finrank k K = p) (σ : K ≃ₐ[k] K) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) :
∃ η : (𝓞 K)ˣ, Algebra.norm k (η : K) = 1 ∧ ∀ ε : (𝓞 K)ˣ, (η : K) ≠ ε / (σ ε : K) := by
obtain ⟨h, ζ, hζ⟩ := h_exists' p (k := k) hp
by_cases H : ∀ ε : (𝓞 K)ˣ, (algebraMap k K ζ) ≠ ε / (σ ε : K)
by_cases H : ∀ ε : (𝓞 K)ˣ, (algebraMap k K ζ^((p : ℤ)^(h-1))) ≠ ε / (σ ε : K)


sorry
simp only [ne_eq, not_forall, not_not] at H
obtain ⟨E, hE⟩ := H
let NE := Units.map (RingOfIntegers.norm k) E
obtain ⟨S, hS⟩ := Hilbert91ish p (K := K) (k := k) hp hKL σ hσ
have NE_p_pow : (Units.map (algebraMap (𝓞 k) (𝓞 K)).toMonoidHom NE) = E ^ (p : ℕ) := by sorry
have NE_p_pow : (Units.map (algebraMap (𝓞 k) (𝓞 K)).toMonoidHom NE) = E ^ (p : ℕ) := by
have Hp: E^(p : ℕ) = σ E^(p: ℕ) := by sorry

sorry
let H := unitlifts p hp hKL σ hσ S
let N : Fin (r + 1) → Additive (𝓞 k)ˣ :=
fun e => Additive.ofMul (Units.map (RingOfIntegers.norm k)) (Additive.toMul (H e))
Expand All @@ -787,6 +792,7 @@ lemma Hilbert92ish (hp : Nat.Prime p)
rw [← Units.coe_val_inv, norm_map_inv]
simp only [coe_zpow', Units.coe_map, MonoidHom.coe_coe]
sorry

sorry
/-
Expand Down

0 comments on commit b46cd00

Please sign in to comment.