Skip to content

USBCore.cpp

Angelo edited this page Dec 30, 2019 · 1 revision


/* Copyright (c) 2010, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/

#include "Platform.h"
#include "USBAPI.h"
#include "USBDesc.h"

#if defined(USBCON)

#define EP_TYPE_CONTROL             0x00
#define EP_TYPE_BULK_IN             0x81
#define EP_TYPE_BULK_OUT            0x80
#define EP_TYPE_INTERRUPT_IN        0xC1
#define EP_TYPE_INTERRUPT_OUT       0xC0
#define EP_TYPE_ISOCHRONOUS_IN      0x41
#define EP_TYPE_ISOCHRONOUS_OUT     0x40

/** Pulse generation counters to keep track of the number of milliseconds remaining for each pulse type */
#define TX_RX_LED_PULSE_MS 100
volatile u8 TxLEDPulse; /**< Milliseconds remaining for data Tx LED pulse */
volatile u8 RxLEDPulse; /**< Milliseconds remaining for data Rx LED pulse */

//==================================================================
//==================================================================

extern const u16 STRING_LANGUAGE[] PROGMEM;
extern const u16 STRING_IPRODUCT[] PROGMEM;
extern const u16 STRING_IMANUFACTURER[] PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptor PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptorA PROGMEM;

const u16 STRING_LANGUAGE[2] = {
    (3<<8) | (2+2),
    0x0409  // English
};

const u16 STRING_IPRODUCT[17] = {
    (3<<8) | (2+2*16),
#if USB_PID == 0x8036
    'A','r','d','u','i','n','o',' ','L','e','o','n','a','r','d','o'
#elif USB_PID == 0x8037
    'A','r','d','u','i','n','o',' ','M','i','c','r','o',' ',' ',' '
#elif USB_PID == 0x803C
    'A','r','d','u','i','n','o',' ','E','s','p','l','o','r','a',' '
#elif USB_PID == 0x9208
    'L','i','l','y','P','a','d','U','S','B',' ',' ',' ',' ',' ',' '
#else
    'U','S','B',' ','I','O',' ','B','o','a','r','d',' ',' ',' ',' '
#endif
};

const u16 STRING_IMANUFACTURER[12] = {
    (3<<8) | (2+2*11),
#if USB_VID == 0x2341
    'A','r','d','u','i','n','o',' ','L','L','C'
#elif USB_VID == 0x1b4f
    'S','p','a','r','k','F','u','n',' ',' ',' '
#else
    'U','n','k','n','o','w','n',' ',' ',' ',' '
#endif
};

#ifdef CDC_ENABLED
#define DEVICE_CLASS 0x02
#else
#define DEVICE_CLASS 0x00
#endif

//  DEVICE DESCRIPTOR
const DeviceDescriptor USB_DeviceDescriptor =
    D_DEVICE(0x00,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);

const DeviceDescriptor USB_DeviceDescriptorA =
    D_DEVICE(DEVICE_CLASS,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);

//==================================================================
//==================================================================

volatile u8 _usbConfiguration = 0;

static inline void WaitIN(void)
{
    while (!(UEINTX & (1<<TXINI)));
}

static inline void ClearIN(void)
{
    UEINTX = ~(1<<TXINI);
}

static inline void WaitOUT(void)
{
    while (!(UEINTX & (1<<RXOUTI)))
        ;
}

static inline u8 WaitForINOrOUT()
{
    while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
        ;
    return (UEINTX & (1<<RXOUTI)) == 0;
}

static inline void ClearOUT(void)
{
    UEINTX = ~(1<<RXOUTI);
}

void Recv(volatile u8* data, u8 count)
{
    while (count--)
        *data++ = UEDATX;

    RXLED1;                 // light the RX LED
    RxLEDPulse = TX_RX_LED_PULSE_MS;
}

static inline u8 Recv8()
{
    RXLED1;                 // light the RX LED
    RxLEDPulse = TX_RX_LED_PULSE_MS;

    return UEDATX;
}

static inline void Send8(u8 d)
{
    UEDATX = d;
}

static inline void SetEP(u8 ep)
{
    UENUM = ep;
}

static inline u8 FifoByteCount()
{
    return UEBCLX;
}

static inline u8 ReceivedSetupInt()
{
    return UEINTX & (1<<RXSTPI);
}

static inline void ClearSetupInt()
{
    UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
}

static inline void Stall()
{
    UECONX = (1<<STALLRQ) | (1<<EPEN);
}

static inline u8 ReadWriteAllowed()
{
    return UEINTX & (1<<RWAL);
}

static inline u8 Stalled()
{
    return UEINTX & (1<<STALLEDI);
}

static inline u8 FifoFree()
{
    return UEINTX & (1<<FIFOCON);
}

static inline void ReleaseRX()
{
    UEINTX = 0x6B;  // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}

static inline void ReleaseTX()
{
    UEINTX = 0x3A;  // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}

static inline u8 FrameNumber()
{
    return UDFNUML;
}

//==================================================================
//==================================================================

u8 USBGetConfiguration(void)
{
    return _usbConfiguration;
}

#define USB_RECV_TIMEOUT
class LockEP
{
    u8 _sreg;
public:
    LockEP(u8 ep) : _sreg(SREG)
    {
        cli();
        SetEP(ep & 7);
    }
    ~LockEP()
    {
        SREG = _sreg;
    }
};

//  Number of bytes, assumes a rx endpoint
u8 USB_Available(u8 ep)
{
    LockEP lock(ep);
    return FifoByteCount();
}

//  Non Blocking receive
//  Return number of bytes read
int USB_Recv(u8 ep, void* d, int len)
{
    if (!_usbConfiguration || len < 0)
        return -1;

    LockEP lock(ep);
    u8 n = FifoByteCount();
    len = min(n,len);
    n = len;
    u8* dst = (u8*)d;
    while (n--)
        *dst++ = Recv8();
    if (len && !FifoByteCount())    // release empty buffer
        ReleaseRX();

    return len;
}

//  Recv 1 byte if ready
int USB_Recv(u8 ep)
{
    u8 c;
    if (USB_Recv(ep,&c,1) != 1)
        return -1;
    return c;
}

//  Space in send EP
u8 USB_SendSpace(u8 ep)
{
    LockEP lock(ep);
    if (!ReadWriteAllowed())
        return 0;
    return 64 - FifoByteCount();
}

//  Blocking Send of data to an endpoint
int USB_Send(u8 ep, const void* d, int len)
{
    if (!_usbConfiguration)
        return -1;

    int r = len;
    const u8* data = (const u8*)d;
    u8 zero = ep & TRANSFER_ZERO;
    u8 timeout = 250;       // 250ms timeout on send? TODO
    while (len)
    {
        u8 n = USB_SendSpace(ep);
        if (n == 0)
        {
            if (!(--timeout))
                return -1;
            delay(1);
            continue;
        }

        if (n > len)
            n = len;
        len -= n;
        {
            LockEP lock(ep);
            if (ep & TRANSFER_ZERO)
            {
                while (n--)
                    Send8(0);
            }
            else if (ep & TRANSFER_PGM)
            {
                while (n--)
                    Send8(pgm_read_byte(data++));
            }
            else
            {
                while (n--)
                    Send8(*data++);
            }
            if (!ReadWriteAllowed() || ((len == 0) && (ep & TRANSFER_RELEASE))) // Release full buffer
                ReleaseTX();
        }
    }
    TXLED1;                 // light the TX LED
    TxLEDPulse = TX_RX_LED_PULSE_MS;
    return r;
}

extern const u8 _initEndpoints[] PROGMEM;
const u8 _initEndpoints[] =
{
    0,

#ifdef CDC_ENABLED
    EP_TYPE_INTERRUPT_IN,       // CDC_ENDPOINT_ACM
    EP_TYPE_BULK_OUT,           // CDC_ENDPOINT_OUT
    EP_TYPE_BULK_IN,            // CDC_ENDPOINT_IN
#endif

#ifdef HID_ENABLED
    EP_TYPE_INTERRUPT_IN        // HID_ENDPOINT_INT
#endif
};

#define EP_SINGLE_64 0x32   // EP0
#define EP_DOUBLE_64 0x36   // Other endpoints

static
void InitEP(u8 index, u8 type, u8 size)
{
    UENUM = index;
    UECONX = 1;
    UECFG0X = type;
    UECFG1X = size;
}

static
void InitEndpoints()
{
    for (u8 i = 1; i < sizeof(_initEndpoints); i++)
    {
        UENUM = i;
        UECONX = 1;
        UECFG0X = pgm_read_byte(_initEndpoints+i);
        UECFG1X = EP_DOUBLE_64;
    }
    UERST = 0x7E;   // And reset them
    UERST = 0;
}

//  Handle CLASS_INTERFACE requests
static
bool ClassInterfaceRequest(Setup& setup)
{
    u8 i = setup.wIndex;

#ifdef CDC_ENABLED
    if (CDC_ACM_INTERFACE == i)
        return CDC_Setup(setup);
#endif

#ifdef HID_ENABLED
    if (HID_INTERFACE == i)
        return HID_Setup(setup);
#endif
    return false;
}

int _cmark;
int _cend;
void InitControl(int end)
{
    SetEP(0);
    _cmark = 0;
    _cend = end;
}

static
bool SendControl(u8 d)
{
    if (_cmark < _cend)
    {
        if (!WaitForINOrOUT())
            return false;
        Send8(d);
        if (!((_cmark + 1) & 0x3F))
            ClearIN();  // Fifo is full, release this packet
    }
    _cmark++;
    return true;
};

//  Clipped by _cmark/_cend
int USB_SendControl(u8 flags, const void* d, int len)
{
    int sent = len;
    const u8* data = (const u8*)d;
    bool pgm = flags & TRANSFER_PGM;
    while (len--)
    {
        u8 c = pgm ? pgm_read_byte(data++) : *data++;
        if (!SendControl(c))
            return -1;
    }
    return sent;
}

//  Does not timeout or cross fifo boundaries
//  Will only work for transfers <= 64 bytes
//  TODO
int USB_RecvControl(void* d, int len)
{
    WaitOUT();
    Recv((u8*)d,len);
    ClearOUT();
    return len;
}

int SendInterfaces()
{
    int total = 0;
    u8 interfaces = 0;

#ifdef CDC_ENABLED
    total = CDC_GetInterface(&interfaces);
#endif

#ifdef HID_ENABLED
    total += HID_GetInterface(&interfaces);
#endif

    return interfaces;
}

//  Construct a dynamic configuration descriptor
//  This really needs dynamic endpoint allocation etc
//  TODO
static
bool SendConfiguration(int maxlen)
{
    //  Count and measure interfaces
    InitControl(0);
    int interfaces = SendInterfaces();
    ConfigDescriptor config = D_CONFIG(_cmark + sizeof(ConfigDescriptor),interfaces);

    //  Now send them
    InitControl(maxlen);
    USB_SendControl(0,&config,sizeof(ConfigDescriptor));
    SendInterfaces();
    return true;
}

u8 _cdcComposite = 0;

static
bool SendDescriptor(Setup& setup)
{
    u8 t = setup.wValueH;
    if (USB_CONFIGURATION_DESCRIPTOR_TYPE == t)
        return SendConfiguration(setup.wLength);

    InitControl(setup.wLength);
#ifdef HID_ENABLED
    if (HID_REPORT_DESCRIPTOR_TYPE == t)
        return HID_GetDescriptor(t);
#endif

    u8 desc_length = 0;
    const u8* desc_addr = 0;
    if (USB_DEVICE_DESCRIPTOR_TYPE == t)
    {
        if (setup.wLength == 8)
            _cdcComposite = 1;
        desc_addr = _cdcComposite ?  (const u8*)&USB_DeviceDescriptorA : (const u8*)&USB_DeviceDescriptor;
    }
    else if (USB_STRING_DESCRIPTOR_TYPE == t)
    {
        if (setup.wValueL == 0)
            desc_addr = (const u8*)&STRING_LANGUAGE;
        else if (setup.wValueL == IPRODUCT)
            desc_addr = (const u8*)&STRING_IPRODUCT;
        else if (setup.wValueL == IMANUFACTURER)
            desc_addr = (const u8*)&STRING_IMANUFACTURER;
        else
            return false;
    }

    if (desc_addr == 0)
        return false;
    if (desc_length == 0)
        desc_length = pgm_read_byte(desc_addr);

    USB_SendControl(TRANSFER_PGM,desc_addr,desc_length);
    return true;
}

//  Endpoint 0 interrupt
ISR(USB_COM_vect)
{
    SetEP(0);
    if (!ReceivedSetupInt())
        return;

    Setup setup;
    Recv((u8*)&setup,8);
    ClearSetupInt();

    u8 requestType = setup.bmRequestType;
    if (requestType & REQUEST_DEVICETOHOST)
        WaitIN();
    else
        ClearIN();

    bool ok = true;
    if (REQUEST_STANDARD == (requestType & REQUEST_TYPE))
    {
        //  Standard Requests
        u8 r = setup.bRequest;
        if (GET_STATUS == r)
        {
            Send8(0);       // TODO
            Send8(0);
        }
        else if (CLEAR_FEATURE == r)
        {
        }
        else if (SET_FEATURE == r)
        {
        }
        else if (SET_ADDRESS == r)
        {
            WaitIN();
            UDADDR = setup.wValueL | (1<<ADDEN);
        }
        else if (GET_DESCRIPTOR == r)
        {
            ok = SendDescriptor(setup);
        }
        else if (SET_DESCRIPTOR == r)
        {
            ok = false;
        }
        else if (GET_CONFIGURATION == r)
        {
            Send8(1);
        }
        else if (SET_CONFIGURATION == r)
        {
            if (REQUEST_DEVICE == (requestType & REQUEST_RECIPIENT))
            {
                InitEndpoints();
                _usbConfiguration = setup.wValueL;
            } else
                ok = false;
        }
        else if (GET_INTERFACE == r)
        {
        }
        else if (SET_INTERFACE == r)
        {
        }
    }
    else
    {
        InitControl(setup.wLength);     //  Max length of transfer
        ok = ClassInterfaceRequest(setup);
    }

    if (ok)
        ClearIN();
    else
    {
        Stall();
    }
}

void USB_Flush(u8 ep)
{
    SetEP(ep);
    if (FifoByteCount())
        ReleaseTX();
}

//  General interrupt
ISR(USB_GEN_vect)
{
    u8 udint = UDINT;
    UDINT = 0;

    //  End of Reset
    if (udint & (1<<EORSTI))
    {
        InitEP(0,EP_TYPE_CONTROL,EP_SINGLE_64); // init ep0
        _usbConfiguration = 0;          // not configured yet
        UEIENX = 1 << RXSTPE;           // Enable interrupts for ep0
    }

    //  Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
    if (udint & (1<<SOFI))
    {
#ifdef CDC_ENABLED
        USB_Flush(CDC_TX);              // Send a tx frame if found
        if (USB_Available(CDC_RX))  // Handle received bytes (if any)
            Serial.accept();
#endif

        // check whether the one-shot period has elapsed.  if so, turn off the LED
        if (TxLEDPulse && !(--TxLEDPulse))
            TXLED0;
        if (RxLEDPulse && !(--RxLEDPulse))
            RXLED0;
    }
}

//  VBUS or counting frames
//  Any frame counting?
u8 USBConnected()
{
    u8 f = UDFNUML;
    delay(3);
    return f != UDFNUML;
}

//=======================================================================
//=======================================================================

USBDevice_ USBDevice;

USBDevice_::USBDevice_()
{
}

void USBDevice_::attach()
{
    _usbConfiguration = 0;
    UHWCON = 0x01;                      // power internal reg
    USBCON = (1<<USBE)|(1<<FRZCLK);     // clock frozen, usb enabled
#if F_CPU == 16000000UL
    PLLCSR = 0x12;                      // Need 16 MHz xtal
#elif F_CPU == 8000000UL
    PLLCSR = 0x02;                      // Need 8 MHz xtal
#endif
    while (!(PLLCSR & (1<<PLOCK)))      // wait for lock pll
        ;

    // Some tests on specific versions of macosx (10.7.3), reported some
    // strange behaviuors when the board is reset using the serial
    // port touch at 1200 bps. This delay fixes this behaviour.
    delay(1);

    USBCON = ((1<<USBE)|(1<<OTGPADE));  // start USB clock
    UDIEN = (1<<EORSTE)|(1<<SOFE);      // Enable interrupts for EOR (End of Reset) and SOF (start of frame)
    UDCON = 0;                          // enable attach resistor

    TX_RX_LED_INIT;
}

void USBDevice_::detach()
{
}

//  Check for interrupts
//  TODO: VBUS detection
bool USBDevice_::configured()
{
    return _usbConfiguration;
}

void USBDevice_::poll()
{
}

#endif /* if defined(USBCON) */
Clone this wiki locally