Skip to content

jaehwan-AI/face_detection_recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Face detection & recognition


Table of Contents

Pre-requisites

  • argparse

    pip install argparse

  • opencv-python

    pip install opencv-python

  • opencv-contrib-python

    pip install opencv-contrib-python

  • Numpy

    pip install numpy

  • facenet-pytorch

    pip install facenet-pytorch

  • Pytorch

    go to install pytorch(_version check!!)

Quick Start

image input

$ python demo.py --image data/image/image.jpg

video input

$ python demo.py --video data/video/video.mp4

webcam

$ python demo.py --src 0

Usage

Dataset

We used Korean dataset that can't be disclosed for security reasons.

Face Detection

We used MTCNN as a facial recognition technology to analyze emotions. MTCNN uses image pyramids by resizing images entered on different scales to recognize faces of different sizes in the images.

Pre-trained Model

In order to inference the model, we used pre-learned weights using EfficientNet(2019).

Sample Outputs

sample image:

sample video:

sample webcam:

References

  1. Tim Esler's facenet-pytorch repo: https://github.com/timesler/facenet-pytorch

  2. Octavio Arriaga's pre-trained model repo: https://github.com/oarriaga/face_classification

  3. K. Zhang, Z. Zhang, Z. Li and Y. Qiao. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, 2016. PDF

  4. M. Tan, Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2019. PDF

About

Face detection & recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages