- argparse
pip install argparse
- opencv-python
pip install opencv-python
- opencv-contrib-python
pip install opencv-contrib-python
- Numpy
pip install numpy
- facenet-pytorch
pip install facenet-pytorch
- Pytorch
go to install pytorch(_version check!!)
-
Clone this repository: $ git clone https://github.com/jaehwan-AI/face_detection_recognition
-
Run the demo:
image input
$ python demo.py --image data/image/image.jpg
video input
$ python demo.py --video data/video/video.mp4
webcam
$ python demo.py --src 0
We used Korean dataset that can't be disclosed for security reasons.
We used MTCNN as a facial recognition technology to analyze emotions. MTCNN uses image pyramids by resizing images entered on different scales to recognize faces of different sizes in the images.
In order to inference the model, we used pre-learned weights using EfficientNet(2019).
sample image:
sample video:
sample webcam:
-
Tim Esler's facenet-pytorch repo: https://github.com/timesler/facenet-pytorch
-
Octavio Arriaga's pre-trained model repo: https://github.com/oarriaga/face_classification
-
K. Zhang, Z. Zhang, Z. Li and Y. Qiao. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, 2016. PDF
-
M. Tan, Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2019. PDF