Skip to content

Latest commit

 

History

History
87 lines (57 loc) · 2.16 KB

README.md

File metadata and controls

87 lines (57 loc) · 2.16 KB

Face detection & recognition


Table of Contents

Pre-requisites

  • argparse

    pip install argparse

  • opencv-python

    pip install opencv-python

  • opencv-contrib-python

    pip install opencv-contrib-python

  • Numpy

    pip install numpy

  • facenet-pytorch

    pip install facenet-pytorch

  • Pytorch

    go to install pytorch(_version check!!)

Quick Start

image input

$ python demo.py --image data/image/image.jpg

video input

$ python demo.py --video data/video/video.mp4

webcam

$ python demo.py --src 0

Usage

Dataset

We used Korean dataset that can't be disclosed for security reasons.

Face Detection

We used MTCNN as a facial recognition technology to analyze emotions. MTCNN uses image pyramids by resizing images entered on different scales to recognize faces of different sizes in the images.

Pre-trained Model

In order to inference the model, we used pre-learned weights using EfficientNet(2019).

Sample Outputs

sample image:

sample video:

sample webcam:

References

  1. Tim Esler's facenet-pytorch repo: https://github.com/timesler/facenet-pytorch

  2. Octavio Arriaga's pre-trained model repo: https://github.com/oarriaga/face_classification

  3. K. Zhang, Z. Zhang, Z. Li and Y. Qiao. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, 2016. PDF

  4. M. Tan, Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 2019. PDF