Demo.mp4
A scalable and efficient multilingual translation system powered by fine-tuned Large Language Models, featuring real-time translation capabilities across multiple language pairs.
- Flowchart: Development Process
- Technical Implementation
- Performance Metrics
- Tech Stack
- Getting Started
- Project Structure
- API Documentation
- Contributing
- License
Hereโs the updated section with the live link separated below the image and set to open in a new tab:
Live Deployment on Google Cloud Platform
Note: The live deployment is hosted on Google Cloud Platform. Please allow up to 2 minutes for cold start if the service is inactive.
This ensures the image and link are separate, and the link opens in a new tab when clicked. Let me know if you need further adjustments! ๐
- Fine-tuned Large Language Model using LoRA (Low-Rank Adaptation)
- Quantization techniques for model optimization
- Automated validation and preprocessing pipelines
- Flask-based REST API server
- Scikit-learn for data preprocessing and validation
- Docker containerization for consistent deployment
- CI/CD pipeline integration for automated deployment
- Responsive web interface
- Real-time translation updates
- Concurrent translation support
- Translation Accuracy: 32% BLEU score
- Training Efficiency: 20% reduction in training cycle time
- Inference Latency: Sub-400ms response time
- Scalability: Handles concurrent translation requests
# Clone the repository
git clone https://github.com/yourusername/multilingual-translation.git
# Install dependencies
pip install -r requirements.txt
# Start the Flask server
python app.py
# Access the web interface
open http://localhost:5000
# Build Docker image
docker build -t translation-model .
# Run container (map port 5000 to 8080)
docker run -p 8080:5000 translation-model
.
โโโ Backend/
โ โโโ ml/
โ โ โโโ models/ # Saved model files for local/production use
โ โ โโโ notebooks/ # Jupyter notebooks for experiments
โ โ โโโ EDA.ipynb # Exploratory Data Analysis
โ โ โโโ NLP pipeline.ipynb # Data preprocessing pipeline
โ โ โโโ M2M100.ipynb # Base M2M100 implementation
โ โ โโโ M2M100(Lora).ipynb # LoRA fine-tuning
โ โ โโโ 4bit FB(M2M100)+lora.ipynb # 4-bit quantization
โ โ โโโ 4bit FB(M2m100)+lora+Greek+Hindi.ipynb # Multi-language support
โ โ โโโ Bleu_score_BFT.ipynb # Performance evaluation
โ โโโ api/ # REST API endpoints
โ โโโ dataset/ # Training and evaluation datasets
โ โโโ preprocessing/ # Production preprocessing scripts
โโโ Frontend/
โ โโโ Templates/
โ โ โโโ index.html # Main application template
โ โโโ static/
โ โโโ css/
โ โ โโโ styles.css # Custom styling
โ โโโ js/
โ โโโ script.js # Frontend logic
โโโ tests/ # Unit and integration tests
โโโ Dockerfile # Container configuration
โโโ requirements.txt # Python dependencies
POST /translate
Content-Type: application/json
{
"source_text": "Hi friends, how are you",
"source_lang": "en",
"target_lang": "hi"
}
{
"translated_text": "เคจเคฎเคธเฅเคเคพเคฐ เคฆเฅเคธเฅเคคเฅเค, เคเคช เคเฅเคธเฅ เคนเฅเค?"
}
{
"source_text": "Hello, how are you?",
"source_lang": "en",
"target_lang": "el"
}
{
"translated_text": "ฮฮตฮนฮฌ ฯฮฟฯ
, ฯฯฯ ฮตฮฏฯฮฑฮน;"
}
- English (en)
- Hindi (hi)
- Greek (el)
{
"error": "Model or tokenizer not loaded."
}
Status: 500
{
"error": "Translation failed."
}
Status: 500
- Fork the repository
- Create your feature branch:
git checkout -b feature/NewFeature
- Commit your changes:
git commit -m 'Add NewFeature'
- Push to the branch:
git push origin feature/NewFeature
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.