-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
74 lines (61 loc) · 2.49 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from flask import Flask, render_template, request, jsonify
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Initialize Flask app
app = Flask(
__name__, template_folder="Frontend/Templates",
static_folder="Frontend/static"
)
# Load the model and tokenizer at startup
def load_model():
try:
# Load model and tokenizer from Hugging Face Hub
model = AutoModelForSeq2SeqLM.from_pretrained("aktheroy/FT_Translate_en_el_hi")
tokenizer = AutoTokenizer.from_pretrained("aktheroy/FT_Translate_en_el_hi")
print(f"Model loaded: {model.__class__.__name__}")
print(f"Tokenizer loaded: {tokenizer.__class__.__name__}")
return model, tokenizer
except Exception as e:
print(f"Error loading model or tokenizer: {e}")
return None, None
# Translate text using the model
def translate_text(model, tokenizer, source_text, source_lang, target_lang):
try:
# Set source language and tokenize input text
tokenizer.src_lang = source_lang
encoded_text = tokenizer(source_text, return_tensors="pt")
# Generate translation
generated_tokens = model.generate(
**encoded_text, forced_bos_token_id=tokenizer.get_lang_id(target_lang)
)
# Decode and return the translated text
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return translated_text[0]
except Exception as e:
print(f"Error during translation: {e}")
return None
# Load the model and tokenizer
model, tokenizer = load_model()
# Route for the homepage
@app.route("/")
def index():
return render_template("index.html")
# Route for translation
@app.route("/translate", methods=["POST"])
def translate():
# Get JSON data from the request
data = request.get_json()
source_text = data.get("source_text")
source_lang = data.get("source_lang")
target_lang = data.get("target_lang")
# Check if model and tokenizer are loaded
if not model or not tokenizer:
return jsonify({"error": "Model or tokenizer not loaded."}), 500
# Translate the text using the model
translated_text = translate_text(model, tokenizer, source_text, source_lang, target_lang)
# Check if translation was successful
if not translated_text:
return jsonify({"error": "Translation failed."}), 500
# Return the translated text
return jsonify({"translated_text": translated_text})
if __name__ == "__main__":
app.run(debug=True, port=8080)