-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
165 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
from torch.utils.data import Dataset, DataLoader | ||
import pandas as pd | ||
import cv2 | ||
from os.path import join | ||
import torch | ||
import numpy as np | ||
from sklearn import preprocessing | ||
|
||
Scaler = preprocessing.MinMaxScaler() | ||
|
||
dataindex = 201 | ||
|
||
class MMIUnseenDataset(Dataset): | ||
|
||
def __init__(self, z_dim,points_path): | ||
self.data = pd.read_csv(points_path,header=None).to_numpy() | ||
self.z_dim = z_dim | ||
|
||
def __getitem__(self,index): | ||
item = self.data[index] | ||
# print(item) | ||
# print(item.shape) | ||
# points = item[0:dataindex-1].astype(np.float64) | ||
points = torch.from_numpy(item.astype(np.float64)) | ||
points = torch.hstack([points, torch.randn(self.z_dim - len(points))]) | ||
points = points.reshape([self.z_dim, 1, 1]) | ||
# print(points.shape) | ||
return points | ||
|
||
|
||
|
||
class MMIDataset(Dataset): | ||
|
||
def __init__(self, img_size, z_dim, points_path, img_folder): | ||
self.data = pd.read_csv(points_path, header=0, index_col=None).to_numpy() | ||
# self.data = pd.read_csv(points_path, header=0).to_numpy() | ||
self.img_folder = img_folder | ||
self.img_size = img_size | ||
self.z_dim = z_dim | ||
|
||
def __getitem__(self, index): | ||
item = self.data[index] | ||
img = cv2.imread(self.img_folder + '\\{}.png'.format(item[0]), cv2.IMREAD_GRAYSCALE) | ||
img = cv2.resize(img, (self.img_size, self.img_size))[:, :, np.newaxis] | ||
img = img / 255.0 | ||
img = img.transpose(2, 0, 1) | ||
img = torch.from_numpy(img) | ||
points21 = item[1:dataindex].astype(np.float64).reshape(-1, 1) | ||
# points21 = item[1:dataindex].astype(np.float64) | ||
points21 = Scaler.fit_transform(points21) | ||
points21 = torch.from_numpy(points21).flatten(0) | ||
# points21 = torch.from_numpy(points21) | ||
|
||
points = item[1:dataindex].astype(np.float64).reshape(-1,1) | ||
# points = item[1:dataindex].astype(np.float64) | ||
# points = Scaler.fit_transform(points) | ||
points = torch.from_numpy(points).flatten(0) | ||
# points = torch.from_numpy(points) | ||
assert len(points) <= self.z_dim | ||
points = torch.hstack([points, torch.randn(self.z_dim - len(points))]) | ||
points = points.reshape([self.z_dim, 1, 1]) | ||
# the shape of points should be [Z_DIM, CHANNELS_IMG, FEATURES_GEN] | ||
|
||
return points, img, points21 | ||
|
||
def __len__(self): | ||
return len(self.data) | ||
|
||
|
||
def get_loader( | ||
img_size, | ||
batch_size, | ||
z_dim, | ||
points_path='C:/Users/Administrator/Desktop/pythonProject/pr1/new1e0.csv', | ||
img_folder='C:/Users/Administrator/Desktop/pythonProject/pr1/Training_Data/image/new', | ||
shuffle=True, | ||
): | ||
return DataLoader(MMIDataset(img_size, z_dim, points_path, img_folder), | ||
batch_size=batch_size, shuffle=shuffle) | ||
|
||
if __name__ == "__main__": | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import torch | ||
from torch import nn | ||
import cv2 | ||
from Dataloader import MMIDataset | ||
import numpy as np | ||
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
# load the saved trained Generator info | ||
#model_path = r'C:/Users/Administrator/Desktop/pythonProject/pr1/logs/WGAN77/netG230.pt' | ||
model_path = r'E:/newline1/netG10.pt' | ||
|
||
# Load the dataset | ||
dataset = MMIDataset(img_size=64, | ||
z_dim=250, | ||
points_path=r'C:/Users/Administrator/Desktop/pythonProject/pr1/2000test.csv', | ||
img_folder=r'C:/Users/Administrator/Desktop/pythonProject/pr1/Training_Data/image/new', | ||
) | ||
|
||
# Output the results path & load the data into Generator | ||
results_folder = r'C:\Users\Administrator\Desktop\pythonProject\pr1' | ||
gen = torch.load(model_path) | ||
gen = gen.to(device) | ||
gen = gen.eval() | ||
|
||
# Generate the image array from given dataset | ||
def predict(net: nn.Module, points): | ||
return net(points).squeeze(0).squeeze(0).cpu().detach().numpy() | ||
|
||
# Generate the desired number of results and save to path | ||
# 0 means to data 1st row | ||
# 40000 means last row in dataset | ||
stop_p = 100 | ||
i = 0 | ||
|
||
for p in dataset: | ||
if i >= stop_p: | ||
break | ||
data = p[0].to(device, dtype=torch.float).unsqueeze(0) | ||
img_out = predict(gen, data) | ||
img = (img_out + 1) / 2 | ||
img = np.round(255 * img) | ||
img = cv2.normalize(img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX) | ||
|
||
cv2.imwrite(results_folder + '\\' + 'map200_' + str(i + 1) + '.png', img) | ||
# cv2.imwrite(results_folder + '\\' + str(i) + '-test.png', img) | ||
i += 1 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
def gradient_penalty(critic, points21, real,fake, device="cpu"): | ||
# torch.autograd.set_detect_anomaly(True) | ||
BATCH_SIZE, C, H, W = real.shape | ||
alpha = torch.rand((BATCH_SIZE, 1, 1, 1)).repeat(1, C, H, W).to(device) | ||
interpolated_images = real * alpha + fake * (1 - alpha) | ||
|
||
# Calculate critic scores | ||
mixed_scores = critic(interpolated_images, points21) | ||
|
||
# Take the gradient of the scores with respect to the images | ||
gradient = torch.autograd.grad( | ||
inputs=interpolated_images, | ||
outputs=mixed_scores, | ||
grad_outputs=torch.ones_like(mixed_scores), | ||
create_graph=True, | ||
retain_graph=True, | ||
)[0] | ||
gradient = gradient.view(gradient.shape[0], -1) | ||
gradient_norm = gradient.norm(2, dim=1) | ||
gradient_penalty = torch.mean((gradient_norm - 1) ** 2) | ||
return gradient_penalty | ||
|
||
|
||
def save_checkpoint(state, filename="wgan_gp.pth.tar"): | ||
print("=> Saving checkpoint") | ||
torch.save(state, filename) | ||
|
||
|
||
def load_checkpoint(checkpoint, gen, disc): | ||
print("=> Loading checkpoint") | ||
gen.load_state_dict(checkpoint['gen']) | ||
disc.load_state_dict(checkpoint['disc']) |