Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
ZooBeasts authored Mar 24, 2024
1 parent c118eee commit 5f786df
Show file tree
Hide file tree
Showing 3 changed files with 106 additions and 0 deletions.
42 changes: 42 additions & 0 deletions Utilities/Norm_image.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import os
from PIL import Image
import numpy as np
import torch



# Set the input and output directories
input_dir = './'
output_dir = './'

# Create the output directory if it doesn't already exist
if not os.path.exists(output_dir):
os.makedirs(output_dir)

# Loop through each file in the input directory
for filename in os.listdir(input_dir):
# Open the image file using PIL
img_path = os.path.join(input_dir, filename)
img = Image.open(img_path)
img_gray = img.convert('L')

# Convert the image to a NumPy array
img_np = np.array(img_gray)

# Convert the NumPy array to a PyTorch tensor
img_tensor = torch.from_numpy(img_np)

# Replace values below 200 with 0, and set all other values to 1
img_tensor[img_tensor <= 100] = 3
img_tensor[img_tensor > 100] = 1

# Reshape the tensor from 64 x 64 to 4096 x 1
# img_tensor = img_tensor.reshape((64, 64))
img_tensor = img_tensor.t()
img_tensor = img_tensor.reshape((4096,1))
img = torch.flatten(img_tensor, 0, -1)

# Save the altered tensor as a text file
tensor_name = os.path.splitext(filename)[0] + '.txt'
tensor_path = os.path.join(output_dir, tensor_name)
np.savetxt(tensor_path, img_tensor.numpy(), fmt='%d')
33 changes: 33 additions & 0 deletions Utilities/convert_array2fig.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
from PIL import Image
import os

file_dir = './'


def get_file_list(file_dir):
for root, dirs, files in os.walk(file_dir):
pass
return files


data_list = get_file_list(file_dir)


def convert_array2fig(filename: str):
with open("2000test/" + filename) as f:
img = Image.new("RGB", (64, 64), (255, 255, 255))
data = f.readlines()
for i in range(len(data)):
if int((data[i].strip())) == 3:
row = i // 64
col = i % 64
img.putpixel((col,row), (0, 0, 0))

img.rotate(90).transpose(Image.FLIP_TOP_BOTTOM).save("./" + filename.split(".")[0] + ".png", dpi=(600, 600))
# img.show()




for name in data_list:
convert_array2fig(name)
31 changes: 31 additions & 0 deletions Utilities/convert_arry2colormap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from PIL import Image

dataset = pd.read_csv('.csv',header=None)


num_columns = dataset.shape[1]
submatrix_width = 5
num_submatrices = num_columns // submatrix_width

for i in range(num_submatrices):
start_col = i * submatrix_width
end_col = start_col + submatrix_width

submatrix = dataset[:, start_col:end_col]

np.savetxt(f'submatrix_{i + 1}.txt', submatrix, delimiter='\t', fmt='%.6f') # Save as .txt

print(f'Saved submatrix_{i + 1}.txt')



# fig, ax1 = plt.subplots()
# c = ax1.pcolor(dataset1,cmap='viridis')
# fig.tight_layout()
# plt.axis('off')
# plt.show()

0 comments on commit 5f786df

Please sign in to comment.