Skip to content

Pass-O-Guava/YOLOv5s-Compression

Repository files navigation

YOLOV5s-Compression

Requirements

# conda
conda create -n yolov5 python=3.9
conda activate yolov5

# pip
pip install -r requirments-01.txt

Download data and weight

# download dataset
cd ../{project}
mkdir -p datasets/coco128

coco128
链接: https://pan.baidu.com/s/1ya6SAFGp6du5RahaU1BlkA?pwd=jufh
提取码: jufh 

datasets/
├── coco128
│   ├── images
│   │   └── train2017
│   ├── labels
│   │   └── train2017
│   ├── LICENSE
│   └── README.txt

# download pre-trained weights
cd {project}
wget -O yolov5s-v5.0.pt https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
wget -O yolov5s-v6.0.pt https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt

1. Base Train

# YOLOv5s
python train.py --data data/coco128.yaml --imgsz 640 --weights yolov5s.pt --cfg models/yolov5s.yaml --epochs 100 --device 0,1 --sync-bn

# [Optional] YOLOv5l-PP-LCNet
python train.py --data data/coco128.yaml --imgsz 640 --weights yolov5lPP-LC.pt --cfg models/lightModels/yolov5lPP-LC.yaml --epochs 60 --device 0,1 --sync-bn

2. Sparse train

I. Slim (BN-L1)

# sparse train
python train.py --data data/coco128.yaml --imgsz 640 --weights runs/train/exp/weights/best-coco128-mAP05-02293.pt --cfg models/prunModels/yolov5s-pruning.yaml --epochs 100 --device 0,1 --sparse

# prune
python pruneSlim.py --data data/coco128.yaml --weights runs/2_sparse-coco128-mAP05-035504.pt --cfg models/prunModels/yolov5s-pruning.yaml --path yolov5s-pruned.yaml --global_percent 0.5 --device 0,1

# finetune
python train.py --data data/coco128.yaml --imgsz 640 --weights runs/3_sparse-coco128-mAP05-035504-Slimpruned.pt --cfg yolov5s-pruned.yaml --epochs 100 --device 0,1

II. EagleEye (un-test)

# search best sub-net
python pruneEagleEye.py --data data/coco128.yaml --weights runs/1_base-coco128-mAP05-02293.pt --cfg models/prunModels/yolov5s-pruning.yaml  --path yolov5s-pruned-eagleeye.yaml --max_iter 100 --remain_ratio 0.5 --delta 0.02

# finetune
python train.py --data data/coco128.yaml --imgsz 640 --weights runs/3_base-coco128-mAP05-02293-EagleEyepruned.pt --cfg yolov5s-pruned-eagleeye.yaml --epochs 100 --device 0,1

5. Quantization PTQ

cd yolov5_quant_sample
cp *.pt weights/SlimPrune
cp *.pt weights/EagleEye

5.1 export onnx

python models/export.py --weights weights/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.pt --img 640 --batch 1 --device 0,1 

5.2 Build a int8 engine using TensorRT's native PTQ

rm trt/yolov5s_calibration.cache

python trt/onnx_to_trt.py --model weights/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.onnx --dtype int8 --batch-size 4 --num-calib-batch 16 --calib-img-dir ../datasets/coco128/images/train2017

5.3 Evaluate the accurary of TensorRT inference result.

# datasets eval (coco128 json label Unfinished)
??? python trt/eval_yolo_trt.py --model ./weights/xxx.trt -l

# image test
python trt/trt_test.py --model weights/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5-int8-4-16-minmax.trt

python trt/trt_test.py --model weights/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned-int8-4-16-minmax.trt

6. Quantization QAT

# QAT-finetuning
python yolo_quant_flow.py --data data/coco128.yaml --cfg models/yolov5s.yaml --ckpt-path weights/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.pt --hyp data//hyp.qat.yaml --skip-layers
python yolo_quant_flow.py --data data/coco128.yaml --cfg models/yolov5s.yaml --ckpt-path weights/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned.pt --hyp data//hyp.qat.yaml --skip-layers

# Build TensorRT engine
python trt/onnx_to_trt.py --model weights/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5_skip4.onnx --dtype int8 --qat
python trt/onnx_to_trt.py --model weights/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned_skip4.onnx --dtype int8 --qat

# Evaluate the accuray of TensorRT engine
python trt/trt_test.py --model  weights/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5_skip4.trt
python trt/trt_test.py --model  weights/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned_skip4.trt

7. Export to deploy

# SlimPrune
python deploy/export_onnx_trt.py --weights runs/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.pt --device 0,1 --half --simplify

# EagleEye
python deploy/export_onnx_trt.py --weights runs/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned.pt --device 0,1 --half --simplify

Test

  1. model size
Base-coco128-mAP05_0.2293.pt                            14.8M
# SlimPrune
Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.pt         4.6M
Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.engine     6.7M
Finetune-coco128-mAP05_0.0810-Slimpruned_0.5_skip4.trt  10.1M
# EagleEye
Finetune_coco128-mAP05_0.0860-EagleEyepruned.pt         6.0M
Finetune_coco128-mAP05_0.0860-EagleEyepruned.engine     8.5M
Finetune-coco128-mAP05_0.0860-EagleEyepruned_skip4.trt  10.1M
  1. detect test
# Test: original.pt
python detect.py  --weights runs/Base-coco128-mAP05_0.2293.pt

Speed: 0.3ms pre-process, 6.0ms inference, 0.4ms NMS per image at shape (1, 3, 640, 640)

# Test: pruned.pt
python detect.py  --weights runs/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.pt

python detect.py  --weights runs/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned.pt

Speed: 0.3ms pre-process, 6.3ms inference, 0.4ms NMS per image at shape (1, 3, 640, 640)

Speed: 0.3ms pre-process, 6.5ms inference, 0.4ms NMS per image at shape (1, 3, 640, 640)

# Test: pruned+FP16.engine
python deploy/detect_trt.py --weights runs/SlimPrune/Finetune-coco128-mAP05_0.0810-Slimpruned_0.5.engine --device 0,1 --half

python deploy/detect_trt.py --weights runs/EagleEye/Finetune_coco128-mAP05_0.0860-EagleEyepruned.engine --device 0,1 --half

Speed: 0.3ms pre-process, 1.3ms inference, 0.9ms NMS per image at shape (1, 3, 640, 640)

Speed: 0.3ms pre-process, 1.5ms inference, 0.7ms NMS per image at shape (1, 3, 640, 640)

Result

Model File Size Inference per img
Base.pt 14.8M 6.0ms
SlimPrune.pt 4.6M 6.3ms
SlimPrune_fp16.engine 6.7M 1.3ms
SlimPrune_int8_PTQ.trt 4.9M 3.5ms
SlimPrune_int8_QAT.trt 10.1M 4.1ms
EagleEye.pt 6.0M 6.5ms
EagleEye_fp16.engine 8.5M 1.5ms
EagleEye_int8_PTQ.trt 5.7M 3.5ms
EagleEye_int8_QTA.trt 10.1M 3.9ms

Plan

  • Base-train
  • Prune(SlimPrune、EagleEye)
  • Finetune
  • FP16 Quantization
  • INT8 PTQ
  • INT8 QAT
  • Change Backbone(mobilev2/...)
  • Distillation

Acknowledge

https://github.com/Gumpest/YOLOv5-Multibackbone-Compression
https://github.com/maggiez0138/yolov5_quant_sample
https://github.com/Syencil/mobile-yolov5-pruning-distillation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published