-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpruneEagleEye.py
127 lines (111 loc) · 5.8 KB
/
pruneEagleEye.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import sys
from copy import deepcopy
from pathlib import Path
import torch
import numpy as np
import yaml
from yaml.events import NodeEvent
# import ruamel.yaml
# from ruamel import yaml
from models.yolo import *
from models.common import *
from models.experimental import *
from utils.general import set_logging
from utils.torch_utils import select_device
from utils.prune_utils import *
from utils.adaptive_bn import *
# obtain_num_parameters = lambda model:sum([param.nelement() for param in model.parameters()])
def rand_prune_and_eval(model, ignore_idx, opt):
# np.random.seed(123)
# origin_nparameters = obtain_num_parameters(model)
origin_flops = model.flops
ignore_conv_idx = [i.replace('bn','conv') for i in ignore_idx]
max_remain_ratio = 1.0
candidates = 0
max_mAP = 0
maskbndict = {}
maskconvdict = {}
with open(opt.cfg) as f:
oriyaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
# with open(opt.cfg, 'r', encoding='utf-8') as f:
# data = f.read()
# oriyaml = yaml.load(data, Loader=ruamel.yaml.RoundTripLoader) # model dict
ABE = AdaptiveBNEval(model, opt, device, hyp)
while True:
pruned_yaml = deepcopy(oriyaml)
# obtain mask
for name, module in model.named_modules():
if isinstance(module, nn.Conv2d):
if name in ignore_conv_idx:
mask = torch.ones(module.weight.data.size()[0]).to(device) # [N, C, H, W]
else:
rand_remain_ratio = (max_remain_ratio - opt.min_remain_ratio) * (np.random.rand(1)) + opt.min_remain_ratio
# rand_remain_ratio = 1.0
mask = obtain_filtermask_l1(module, rand_remain_ratio).to(device)
# name: model.0.conv
# module: Conv2d(3, 16, kernel_size=(6, 6), stride=(2, 2), padding=(2, 2), bias=False)
maskbndict[(name[:-4] + 'bn')] = mask
maskconvdict[name] = mask
pruned_yaml = update_yaml(pruned_yaml, model, ignore_conv_idx, maskconvdict, opt)
compact_model = Model(pruned_yaml, pruning=True).to(device)
current_flops = compact_model.flops
if (current_flops/origin_flops > opt.remain_ratio+opt.delta) or (current_flops/origin_flops < opt.remain_ratio-opt.delta):
del compact_model
del pruned_yaml
continue
weights_inheritance(model, compact_model, from_to_map, maskbndict)
mAP = ABE(compact_model)
print('[email protected] of candidate sub-network is {:f}'.format(mAP))
if mAP > max_mAP:
max_mAP = mAP
with open(opt.path, "w", encoding='utf-8') as f:
yaml.safe_dump(pruned_yaml,f,encoding='utf-8', allow_unicode=True, default_flow_style=True, sort_keys=False)
# yaml.dump(pruned_yaml, f, Dumper=ruamel.yaml.RoundTripDumper)
# with open(opt.path[:-5]+'_.yaml', "w", encoding='utf-8') as fd:
# yaml.safe_dump(pruned_yaml,fd,encoding='utf-8', allow_unicode=True, sort_keys=False)
ckpt = {'epoch': -1,
'best_fitness': [max_mAP],
'model': deepcopy(de_parallel(compact_model)).half(),
'ema': None,
'updates': None,
'optimizer': None,
'wandb_id': None}
torch.save(ckpt, opt.weights[:-3]+'-EagleEyepruned.pt')
candidates = candidates + 1
del compact_model
del pruned_yaml
if candidates > opt.max_iter:
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default="runs/train/exp3/weights/best.pt", help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/yolov5s-visdrone.yaml', help='model.yaml')
parser.add_argument('--data', type=str, default='data/VisDrone.yaml', help='data.yaml path')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--batch-size', type=int, default=32, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--path', type=str, default='models/yolov5s-visdrone-pruned.yaml', help='the path to save pruned yaml')
parser.add_argument('--min_remain_ratio', type=float, default=0.2)
parser.add_argument('--max_iter', type=int, default=700, help='maximum number of arch search')
parser.add_argument('--remain_ratio', type=float, default=0.5, help='the whole parameters/FLOPs remain ratio')
parser.add_argument('--delta', type=float, default=0.02, help='scale of arch search')
opt = parser.parse_args()
opt.cfg = check_file(opt.cfg) # check file
set_logging()
device = select_device(opt.device)
with open(opt.hyp) as f:
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
# Create model
model = Model(opt.cfg).to(device)
ckpt = torch.load(opt.weights, map_location=device)
exclude = [] # exclude keys
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(state_dict, strict=True) # load strictly
# Parse Module
CBL_idx, ignore_idx, from_to_map = parse_module_defs(model.yaml)
rand_prune_and_eval(model,ignore_idx,opt)