Skip to content

Mitra-coding/test_patch_classifier

Repository files navigation

breast-cancer-exp-repository

Sample repository for using as a blue-print in ML experimentation projects, which is using DVC for versioning and MLFlow for tracking.

Import Data

  1. initialize DVC in the repository -> dvc init
  2. install DVC post-checkout, pre-commit, pre-push -> dvc install
  3. list the tracked data in the data registry -> dvc list https://github.com/iamsoroush/dvc-minio-data-registry --rev main
  4. import the datasource(s) -> dvc import https://github.com/iamsoroush/dvc-minio-data-registry.git "datasources/RSNA" -o data/, or update the dataset to the latest version -> dvc update datasources/pacs.dvc
  5. import the task meta-data -> dvc import https://github.com/iamsoroush/dvc-minio-data-registry.git "tasks/hemo" -o data/hemo
  6. add and commit dvc files in the data folder -> git add data/.gitignore data/*.dvc; git commit data/.gitignore data/*.dvc -m "add RSNA datasource and hemo meta-data"

Run an experiment

  1. prepare the data: python prepare.py --meta-data data/hemo/meta-data.csv --output-dir data/hemo
  2. train: python train.py --conf config.yaml
  3. evaluate: python evaluate.py --conf config.yaml
  4. export: python export.py --conf config.yaml

About

test to run via colab

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published