When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning
This is the source code of "When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning" (LatGRL), accepted by IEEE Transactions on Neural Networks and Learning Systems 2025 (TNNLS).
Paper Link: https://ieeexplore.ieee.org/document/10905047
Arxiv Link: https://arxiv.org/abs/2409.00687
To our knowledge, we are the first to explore the phenomenon of node-level heterophily in heterogeneous graphs and attempt to address this issue in unsupervised heterogeneous graph learning. The marginal and multi-relational joint distributions of node-level homophily ratios across different meta-paths in real-world heterogeneous graphs are shown below:
Datasets: https://drive.google.com/file/d/12nWwcrufexpU1n6W7YTyb-6sL1wQ-WrY/view?usp=sharing
Place the 'data' folder from the downloaded files into the 'LatGRL' directory.
This code requires the following:
- Python==3.9.16
- PyTorch==1.13.1
- Numpy==1.24.2
- Scipy==1.10.1
- Scikit-learn==1.2.1
For different datasets, please run the following code:
ACM:
LatGRL:
python main.py -dataset acm
LatGRL-S:
python main_sampler.py -dataset acm
DBLP:
LatGRL:
python main.py -dataset dblp
LatGRL-S:
python main_sampler.py -dataset dblp
Yelp:
LatGRL:
python main.py -dataset yelp
LatGRL-S:
python main_sampler.py -dataset yelp
IMDB:
LatGRL:
python main.py -dataset imdb
LatGRL-S:
python main_sampler.py -dataset imdb
Ogbn-mag:
LatGRL-S:
python main_sampler.py -dataset mag
@article{10905047,
author={Shen, Zhixiang and Kang, Zhao},
journal={IEEE Transactions on Neural Networks and Learning Systems},
title={When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning},
year={2025},
pages={1-14},
publisher={IEEE},
doi={10.1109/TNNLS.2025.3540063}}