Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ECCV2022 Paper (XDED) #173

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 15 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# awesome-domain-adaptation

[![MIT License](https://img.shields.io/badge/license-MIT-green.svg)](https://opensource.org/licenses/MIT)
[![MIT License](https://img.shields.io/badge/license-MIT-green.svg)](https://opensource.org/licenses/MIT)

This repo is a collection of AWESOME things about domain adaptation, including papers, code, etc. Feel free to star and fork.

Expand Down Expand Up @@ -157,7 +157,7 @@ for Adversarial Domain Adaptation [[ICCV2021]](https://openaccess.thecvf.com/con
- Domain-Symmetric Networks for Adversarial Domain Adaptation [[CVPR2019]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Domain-Symmetric_Networks_for_Adversarial_Domain_Adaptation_CVPR_2019_paper.pdf) [[Pytorch]](https://github.com/YBZh/SymNets)
- DLOW: Domain Flow for Adaptation and Generalization [[CVPR2019 Oral]](https://arxiv.org/pdf/1812.05418.pdf)
- Progressive Feature Alignment for Unsupervised Domain Adaptation [[CVPR2019]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Chen_Progressive_Feature_Alignment_for_Unsupervised_Domain_Adaptation_CVPR_2019_paper.pdf) [[Tensorflow]](https://github.com/Xiewp/PFAN)
- Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild [[CVPR2019]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Tran_Gotta_Adapt_Em_All_Joint_Pixel_and_Feature-Level_Domain_Adaptation_CVPR_2019_paper.pdf)
- Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild [[CVPR2019]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Tran_Gotta_Adapt_Em_All_Joint_Pixel_and_Feature-Level_Domain_Adaptation_CVPR_2019_paper.pdf)
- Looking back at Labels: A Class based Domain Adaptation Technique [[IJCNN2019]](https://arxiv.org/abs/1904.01341) [[Project]](https://vinodkkurmi.github.io/DiscriminatorDomainAdaptation/)
- Consensus Adversarial Domain Adaptation [[AAAI2019]](https://aaai.org/ojs/index.php/AAAI/article/view/4552)
- Transferable Attention for Domain Adaptation [[AAAI2019]](http://ise.thss.tsinghua.edu.cn/~mlong/doc/transferable-attention-aaai19.pdf)
Expand All @@ -176,7 +176,7 @@ for Adversarial Domain Adaptation [[ICCV2021]](https://openaccess.thecvf.com/con
- Generate To Adapt: Aligning Domains using Generative Adversarial Networks [[CVPR2018]](https://arxiv.org/abs/1704.01705) [[Pytorch(Official)]](https://github.com/yogeshbalaji/Generate_To_Adapt)
- Image to Image Translation for Domain Adaptation [[CVPR2018]](https://arxiv.org/abs/1712.00479)
- Unsupervised Domain Adaptation with Similarity Learning [[CVPR2018]](https://arxiv.org/abs/1711.08995)
- Conditional Generative Adversarial Network for Structured Domain Adaptation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Hong_Conditional_Generative_Adversarial_CVPR_2018_paper.pdf)
- Conditional Generative Adversarial Network for Structured Domain Adaptation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Hong_Conditional_Generative_Adversarial_CVPR_2018_paper.pdf)
- Collaborative and Adversarial Network for Unsupervised Domain Adaptation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Collaborative_and_Adversarial_CVPR_2018_paper.pdf) [[Pytorch]](https://github.com/zhangweichen2006/iCAN)
- Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Re-Weighted_Adversarial_Adaptation_CVPR_2018_paper.pdf)
- Multi-Adversarial Domain Adaptation [[AAAI2018]](http://ise.thss.tsinghua.edu.cn/~mlong/doc/multi-adversarial-domain-adaptation-aaai18.pdf) [[Caffe(Official)]](https://github.com/thuml/MADA)
Expand Down Expand Up @@ -255,7 +255,7 @@ Label Shift CO-ALignment [[23 Oct 2019]](https://arxiv.org/abs/1910.10320)
- Global-Local Regularization Via Distributional Robustness [[AISTATS2023]](https://arxiv.org/abs/2203.00553) [[Pytorch]](https://github.com/VietHoang1512/GLOT/)
- MOST: Multi-Source Domain Adaptation via Optimal Transport for Student-Teacher Learning [[UAI2021]](https://auai.org/uai2021/pdf/uai2021.106.pdf)
- LAMDA: Label Matching Deep Domain Adaptation [[ICML2021]](http://proceedings.mlr.press/v139/le21a.html)
- TIDOT: A Teacher Imitation Learning Approach for Domain Adaptation with Optimal Transport [[IJCAI2021]](https://www.ijcai.org/proceedings/2021/0394.pdf)
- TIDOT: A Teacher Imitation Learning Approach for Domain Adaptation with Optimal Transport [[IJCAI2021]](https://www.ijcai.org/proceedings/2021/0394.pdf)
- Unbalanced minibatch Optimal Transport; applications to Domain Adaptation [[ICML2021]](https://arxiv.org/abs/2103.03606) [[Pytorch]](https://github.com/kilianFatras/JUMBOT)
- Graph Optimal Transport for Cross-Domain Alignment [[ICML2020]](https://proceedings.icml.cc/static/paper_files/icml/2020/971-Paper.pdf)
- Margin-aware Adversarial Domain Adaptation with Optimal Transport [[ICML2020]](https://proceedings.icml.cc/static/paper_files/icml/2020/2666-Paper.pdf) [[code]](https://github.com/sofiendhouib/MADAOT)
Expand Down Expand Up @@ -313,7 +313,7 @@ Label Shift CO-ALignment [[23 Oct 2019]](https://arxiv.org/abs/1910.10320)
- Understanding the Limits of Unsupervised Domain Adaptation via Data Poisoning [[NeurIPS2021]](https://proceedings.neurips.cc/paper/2021/hash/90cc440b1b8caa520c562ac4e4bbcb51-Abstract.html)
- SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation [[ICCV2021]](https://openaccess.thecvf.com/content/ICCV2021/html/Prabhu_SENTRY_Selective_Entropy_Optimization_via_Committee_Consistency_for_Unsupervised_Domain_ICCV_2021_paper.html)
- Transporting Causal Mechanisms for Unsupervised Domain Adaptation [[ICCV2021]](https://openaccess.thecvf.com/content/ICCV2021/html/Yue_Transporting_Causal_Mechanisms_for_Unsupervised_Domain_Adaptation_ICCV_2021_paper.html)
- Semantic Concentration for Domain Adaptation [[ICCV2021]](https://openaccess.thecvf.com/content/ICCV2021/html/Li_Semantic_Concentration_for_Domain_Adaptation_ICCV_2021_paper.html)
- Semantic Concentration for Domain Adaptation [[ICCV2021]](https://openaccess.thecvf.com/content/ICCV2021/html/Li_Semantic_Concentration_for_Domain_Adaptation_ICCV_2021_paper.html)
- FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Na_FixBi_Bridging_Domain_Spaces_for_Unsupervised_Domain_Adaptation_CVPR_2021_paper.pdf)
- Domain Adaptation With Auxiliary Target Domain-Oriented Classifier [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Liang_Domain_Adaptation_With_Auxiliary_Target_Domain-Oriented_Classifier_CVPR_2021_paper.pdf)
- Conditional Bures Metric for Domain Adaptation [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Luo_Conditional_Bures_Metric_for_Domain_Adaptation_CVPR_2021_paper.pdf)
Expand Down Expand Up @@ -392,7 +392,7 @@ Decomposition [[25 Sep 2019]](https://arxiv.org/abs/1909.11285)
- Virtual Mixup Training for Unsupervised Domain Adaptation [[arXiv on 24 May 2019]](https://arxiv.org/abs/1905.04215) [[Tensorflow]](https://github.com/xudonmao/VMT)
- Learning Smooth Representation for Unsupervised Domain Adaptation [[arXiv 26 May 2019]](https://arxiv.org/abs/1905.10748v1)
- Towards Self-similarity Consistency and Feature Discrimination for Unsupervised Domain Adaptation [[arXiv 13 Apr 2019]](https://arxiv.org/abs/1904.06490v1)
- Easy Transfer Learning By Exploiting Intra-domain Structures [[arXiv 2 Apr 2019]](https://arxiv.org/abs/1904.01376v1)
- Easy Transfer Learning By Exploiting Intra-domain Structures [[arXiv 2 Apr 2019]](https://arxiv.org/abs/1904.01376v1)
- Domain Discrepancy Measure Using Complex Models in Unsupervised Domain Adaptation [[arXiv 30 Jan 2019]](https://arxiv.org/abs/1901.10654v1)
- Domain Alignment with Triplets [[arXiv 22 Jan 2019]](https://arxiv.org/abs/1812.00893v2)
- Deep Discriminative Learning for Unsupervised Domain Adaptation [[arXiv 17 Nov 2018]](https://arxiv.org/abs/1811.07134v1)
Expand Down Expand Up @@ -725,6 +725,7 @@ Decomposition [[25 Sep 2019]](https://arxiv.org/abs/1909.11285)
- PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization [[ICCV2023]](https://arxiv.org/abs/2307.15199) [[Project]](https://promptstyler.github.io/)
- Sparse Mixture-of-Experts are Domain Generalizable Learners [[ICLR2023(Oral)]](https://openreview.net/forum?id=RecZ9nB9Q4) [[Pytorch]](https://github.com/Luodian/Generalizable-Mixture-of-Experts)
- Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts [[NeruIPS2022]](https://arxiv.org/pdf/2210.03885.pdf) [[Pytorch]](https://github.com/n3il666/Meta-DMoE)
- Cross-Domain Ensemble Distillation for Domain Generalized Semantic Segmentation [[ECCV 2022]](https://arxiv.org/pdf/2211.14058) [[Pytorch]](https://github.com/leekyungmoon/XDED)
- Style-Hallucinated Dual Consistency Learning for Domain Generalized Semantic Segmentation [[ECCV 2022]](https://arxiv.org/pdf/2204.02548.pdf) [[Pytorch]](https://github.com/HeliosZhao/SHADE)
- Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification [[CVPR 2021]](https://arxiv.org/pdf/2012.00417.pdf) [[Pytorch]](https://github.com/HeliosZhao/M3L)
- Domain Generalization via Inference-time Label-Preserving Target Projections [[CVPR2021]](https://arxiv.org/abs/2103.01134) [[Pytorch]](https://github.com/peterDan8/InferenceTimeDG)
Expand Down Expand Up @@ -793,7 +794,7 @@ Decomposition [[25 Sep 2019]](https://arxiv.org/abs/1909.11285)

**Survey**
- Unsupervised Domain Adaptation of Object Detectors: A Survey [[Arxiv 27 May 2021]](https://arxiv.org/abs/2105.13502)

**Conference**
- Improving Object Detection via Local-Global Contrastive Learning [[BMVC2024]](https://arxiv.org/abs/2410.05058) [[Project]](https://local-global-detection.github.io/)
- Supervision Interpolation via LossMix: Generalizing Mixup for Object Detection and Beyond [[AAAI2024]](https://arxiv.org/abs/2303.10343)
Expand Down Expand Up @@ -901,7 +902,7 @@ for Cross-dataset 3D Object Detection [[CVPR2021]](https://openaccess.thecvf.com
- Cross-View Regularization for Domain Adaptive Panoptic Segmentation [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Huang_Cross-View_Regularization_for_Domain_Adaptive_Panoptic_Segmentation_CVPR_2021_paper.pdf)
- Semi-supervised Domain Adaptation based on Dual-level Domain Mixing for Semantic Segmentation [[CVPR2021]](https://arxiv.org/abs/2103.04705v1)
- MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Guo_MetaCorrection_Domain-Aware_Meta_Loss_Correction_for_Unsupervised_Domain_Adaptation_in_CVPR_2021_paper.pdf)
- Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric Alignment and Category-Center Regularization [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Ma_Coarse-To-Fine_Domain_Adaptive_Semantic_Segmentation_With_Photometric_Alignment_and_Category-Center_CVPR_2021_paper.pdf)
- Coarse-to-Fine Domain Adaptive Semantic Segmentation with Photometric Alignment and Category-Center Regularization [[CVPR2021]](https://openaccess.thecvf.com/content/CVPR2021/papers/Ma_Coarse-To-Fine_Domain_Adaptive_Semantic_Segmentation_With_Photometric_Alignment_and_Category-Center_CVPR_2021_paper.pdf)
- Multi-Source Domain Adaptation with Collaborative Learning for Semantic Segmentation [[CVPR2021]](https://arxiv.org/abs/2103.04717v2)
- Source-Free Domain Adaptation for Semantic Segmentation [[CVPR2021]](https://arxiv.org/abs/2103.16372v1)
- Instance Adaptive Self-Training for Unsupervised Domain Adaptation [[ECCV 2020]](https://arxiv.org/abs/2008.12197) [[Pytorch]](https://github.com/bupt-ai-cz/IAST-ECCV2020)
Expand All @@ -913,7 +914,7 @@ for Cross-dataset 3D Object Detection [[CVPR2021]](https://openaccess.thecvf.com
- Learning from Scale-Invariant Examples for Domain Adaptation in Semantic Segmentation [[ECCV2020]](http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123670290.pdf)
- Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation [[ECCV2020]](http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123720477.pdf)
- Unsupervised Domain Adaptation for Semantic Segmentation of NIR Images through Generative Latent Search [[ECCV2020]](http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123510409.pdf)
- Domain Adaptive Semantic Segmentation Using Weak Labels [[ECCV2020]](http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540545.pdf)
- Domain Adaptive Semantic Segmentation Using Weak Labels [[ECCV2020]](http://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123540545.pdf)
- Content-Consistent Matching for Domain Adaptive Semantic Segmentation [[ECCV2020]](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123590426.pdf) [[PyTorch]](https://github.com/Solacex/CCM)
- Cross-Domain Semantic Segmentation via Domain-Invariant Interactive Relation Transfer [[CVPR2020]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Lv_Cross-Domain_Semantic_Segmentation_via_Domain-Invariant_Interactive_Relation_Transfer_CVPR_2020_paper.pdf)
- Phase Consistent Ecological Domain Adaptation [[CVPR2020]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_Phase_Consistent_Ecological_Domain_Adaptation_CVPR_2020_paper.pdf) [[Pytorch]](https://github.com/donglao/PCEDA)
Expand Down Expand Up @@ -951,7 +952,7 @@ Segmentation: A Non-Adversarial Approach [[ICCV2019]](http://openaccess.thecvf.c
- Penalizing Top Performers: Conservative Loss for Semantic Segmentation Adaptation [[ECCV2018]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Xinge_Zhu_Penalizing_Top_Performers_ECCV_2018_paper.pdf)
- Domain transfer through deep activation matching [[ECCV2018]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Haoshuo_Huang_Domain_transfer_through_ECCV_2018_paper.pdf)
- Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training [[ECCV2018]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Yang_Zou_Unsupervised_Domain_Adaptation_ECCV_2018_paper.pdf) [[Pytorch]](https://github.com/yzou2/CBST)
- DCAN: Dual channel-wise alignment networks for unsupervised scene adaptation [[ECCV2018]](https://eccv2018.org/openaccess/content_ECCV_2018/papers/Zuxuan_Wu_DCAN_Dual_Channel-wise_ECCV_2018_paper.pdf)
- DCAN: Dual channel-wise alignment networks for unsupervised scene adaptation [[ECCV2018]](https://eccv2018.org/openaccess/content_ECCV_2018/papers/Zuxuan_Wu_DCAN_Dual_Channel-wise_ECCV_2018_paper.pdf)
- Fully convolutional adaptation networks for semantic
segmentation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Fully_Convolutional_Adaptation_CVPR_2018_paper.pdf)
- Learning to Adapt Structured Output Space for Semantic Segmentation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Tsai_Learning_to_Adapt_CVPR_2018_paper.pdf) [[Pytorch]](https://github.com/wasidennis/AdaptSegNet)
Expand All @@ -966,7 +967,7 @@ segmentation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/
- Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation [[IJCV2020]](https://arxiv.org/abs/2003.03773)[[Pytorch]](https://github.com/layumi/Seg-Uncertainty)
- Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet [[Neurocomputing 2021]](https://arxiv.org/abs/2006.15954) [[Pytorch]](https://github.com/bupt-ai-cz/CAC-UNet-DigestPath2019)
- Affinity Space Adaptation for Semantic Segmentation Across Domains [[TIP2020]](https://arxiv.org/abs/2009.12559)[[Pytorch]](https://github.com/idealwei/ASANet)
- Semantic-aware short path adversarial training for cross-domain semantic segmentation [[Neurocomputing 2019]](https://www.sciencedirect.com/science/article/pii/S0925231219315656#fig0002)
- Semantic-aware short path adversarial training for cross-domain semantic segmentation [[Neurocomputing 2019]](https://www.sciencedirect.com/science/article/pii/S0925231219315656#fig0002)
- Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes [[TIP]](https://arxiv.org/abs/1904.09092v1)

**Arxiv**
Expand Down Expand Up @@ -998,7 +999,7 @@ segmentation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/
- A Novel Unsupervised Camera-aware Domain Adaptation Framework for Person Re-identification [[ICCV2019]](https://arxiv.org/abs/1904.03425)
- Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification [[CVPR2019]](https://arxiv.org/abs/1904.01990v1) [[Pytorch]](https://github.com/zhunzhong07/ECN)
- Domain Adaptation through Synthesis for Unsupervised Person Re-identification [[ECCV2018]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Slawomir_Bak_Domain_Adaptation_through_ECCV_2018_paper.pdf)
- Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [[CVPR2018]](https://arxiv.org/abs/1711.08565v2)
- Person Transfer GAN to Bridge Domain Gap for Person Re-Identification [[CVPR2018]](https://arxiv.org/abs/1711.08565v2)
- Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [[CVPR2018]](https://arxiv.org/abs/1711.07027v3)

**Arxiv**
Expand Down Expand Up @@ -1048,7 +1049,7 @@ segmentation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/

**Journal**
- Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet [[Neurocomputing 2021]](https://arxiv.org/abs/2006.15954) [[Pytorch]](https://github.com/bupt-ai-cz/CAC-UNet-DigestPath2019)

**Arxiv**
- On-the-Fly Test-time Adaptation for Medical Image Segmentation [[10 Mar 2022]](https://arxiv.org/abs/2203.05574) [[Pytorch]](https://github.com/jeya-maria-jose/On-The-Fly-Adaptation)
- Target and task specific source-free domain adaptive image segmentation [[10 Mar 2023]](https://arxiv.org/abs/2203.15792) [[Pytorch]](https://github.com/Vibashan/tt-sfuda)
Expand Down Expand Up @@ -1136,7 +1137,7 @@ segmentation [[CVPR2018]](http://openaccess.thecvf.com/content_cvpr_2018/papers/
- Cross-domain fault diagnosis through optimal transport for a CSTR process [[DYCOPS2022]](https://www.sciencedirect.com/science/article/pii/S2405896322009727) [[Code]](https://github.com/eddardd/CrossDomainFaultDiagnosis)

**Journal**
- DASGIL: Domain Adaptation for Semantic and Geometric-Aware Image-Based Localization [[TIP2020]](https://ieeexplore.ieee.org/document/9296559) [[Pytorch]](https://github.com/HanjiangHu/DASGIL)
- DASGIL: Domain Adaptation for Semantic and Geometric-Aware Image-Based Localization [[TIP2020]](https://ieeexplore.ieee.org/document/9296559) [[Pytorch]](https://github.com/HanjiangHu/DASGIL)
- An Unsupervised Domain Adaptation Scheme for Single-Stage Artwork Recognition in Cultural Sites [[Image and Vision Computing 2020]](https://arxiv.org/abs/2008.01882v3) [[Pytorch]](https://github.com/fpv-iplab/DA-RetinaNet) [[Project]](https://iplab.dmi.unict.it/EGO-CH-OBJ-UDA/)
- Multi-source transfer learning of time series in cyclical manufacturing [[JIntellManuf2020]](https://link.springer.com/article/10.1007/s10845-019-01499-4)
- Domain adaptation for regression under Beer-Lambert's law [[KBS2020]](https://www.sciencedirect.com/science/article/abs/pii/S0950705120305761)
Expand Down