-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8cab03c
commit 199a219
Showing
2 changed files
with
277 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
"x","y" | ||
26.4,-65.6 | ||
6.2,-2.7 | ||
20.2,-123.1 | ||
46.6,10.7 | ||
33.4,16 | ||
16.8,-77.7 | ||
10,-2.7 | ||
15.8,-21.5 | ||
13.6,-2.7 | ||
55,-2.7 | ||
16.2,-50.8 | ||
8.2,-2.7 | ||
26.2,-107.1 | ||
47.8,-14.7 | ||
11,-5.4 | ||
15.4,-32.1 | ||
16.8,-91.1 | ||
32.8,46.9 | ||
35.2,-54.9 | ||
43,14.7 | ||
16.4,-5.4 | ||
16,-26.8 | ||
19.2,-123.1 | ||
45,10.7 | ||
16.2,-21.5 | ||
38,10.7 | ||
25.4,-72.3 | ||
7.8,-2.7 | ||
28.4,-21.5 | ||
9.6,-2.7 | ||
14.6,-13.3 | ||
23.2,-123.1 | ||
8.8,-2.7 | ||
29.4,-17.4 | ||
39.4,-1.3 | ||
3.2,-2.7 | ||
15.6,-40.2 | ||
57.6,10.7 | ||
38,46.9 | ||
36.2,-37.5 | ||
23.4,-128.5 | ||
35.6,32.1 | ||
25.4,-44.3 | ||
24.2,-81.8 | ||
15.6,-21.5 | ||
33.8,45.6 | ||
21.2,-134 | ||
19.4,-72.3 | ||
13.8,0 | ||
17.8,-99.1 | ||
25,-64.4 | ||
17.6,-37.5 | ||
22,-123.1 | ||
4,-2.7 | ||
27.2,-24.2 | ||
31.2,8.1 | ||
17.6,-123.1 | ||
42.8,-10.7 | ||
17.6,-85.6 | ||
2.4,0 | ||
55.4,-2.7 | ||
17.6,-101.9 | ||
14.8,-2.7 | ||
13.2,-2.7 | ||
19.6,-127.2 | ||
52,10.7 | ||
40,-21.5 | ||
35.2,-16 | ||
47.8,-26.8 | ||
24.2,-95.1 | ||
35.4,69.6 | ||
32,54.9 | ||
55,10.7 | ||
30.2,36.2 | ||
16.6,-59 | ||
26,-5.4 | ||
15.4,-53.5 | ||
53.2,-14.7 | ||
15.8,-50.8 | ||
15.4,-54.9 | ||
10.6,-2.7 | ||
6.8,-1.3 | ||
2.6,-1.3 | ||
20.4,-117.9 | ||
6.6,-2.7 | ||
28.4,37.5 | ||
27,-16 | ||
10.2,-5.4 | ||
14.6,-5.4 | ||
31,75 | ||
11.4,0 | ||
14.6,-16 | ||
48.8,-13.3 | ||
18.6,-112.5 | ||
27.6,4 | ||
39.2,5.4 | ||
34.4,1.3 | ||
41.6,-10.7 | ||
44,-1.3 | ||
27.2,9.5 | ||
26.2,-21.5 | ||
19.4,-85.6 | ||
32,48.2 | ||
42.4,29.4 | ||
24.6,-53.5 | ||
36.2,22.8 | ||
3.6,0 | ||
21.4,-101.9 | ||
21.8,-108.4 | ||
14.6,-22.8 | ||
16.2,-61.7 | ||
16,-42.9 | ||
40.4,-13.3 | ||
14.6,-9.3 | ||
41.6,30.8 | ||
16.4,-80.4 | ||
44.4,0 | ||
25,-57.6 | ||
17.8,-104.4 | ||
25.6,-26.8 | ||
14.6,-5.4 | ||
8.8,-1.3 | ||
34.8,75 | ||
35.6,34.8 | ||
28.6,46.9 | ||
50.6,0 | ||
27.2,-45.6 | ||
18.6,-50.8 | ||
16.8,-71 | ||
24,-112.5 | ||
42.8,0 | ||
28.2,12 | ||
15.4,-22.8 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
# Zafer Cavdar - COMP 421 Homework 4 - Nonparametric Regression | ||
|
||
# read data into memory | ||
data_set <- read.csv("hw04_data_set.csv") | ||
|
||
# get x and y values | ||
set.seed(521) | ||
x_all <- data_set$x | ||
y_all <- data_set$y | ||
train_indices <- sample(length(x_all), 100) | ||
x_train <- x_all[train_indices] | ||
y_train <- y_all[train_indices] | ||
x_test <- x_all[-train_indices] | ||
y_test <- y_all[-train_indices] | ||
|
||
# set bin width and borders | ||
minimum_value <- floor(min(x_all)) - 2 | ||
maximum_value <- ceiling(max(x_all)) + 2 | ||
bin_width <- 3 | ||
grid_interval <- 0.01 | ||
data_interval <- seq(from = minimum_value, to = maximum_value, by = grid_interval) | ||
|
||
# Regressogram | ||
left_borders <- seq(from = minimum_value, to = maximum_value - bin_width, by = bin_width) | ||
right_borders <- seq(from = minimum_value + bin_width, to = maximum_value, by = bin_width) | ||
g_head <- sapply(1:length(left_borders), function(i) { | ||
bin <- y_train[left_borders[i] < x_train & x_train <= right_borders[i]] | ||
return(mean(bin)) | ||
} | ||
) | ||
|
||
get_bin_no <- function(v) { | ||
return(ceiling((v-minimum_value) / bin_width)) | ||
} | ||
|
||
plot(x_train, y_train, type = "p", pch = 19, col = "blue", | ||
ylim = c(min(y_train), max(y_train)), xlim = c(minimum_value, maximum_value), | ||
ylab = "y", xlab = "x", las = 1, main = sprintf("h = %g", bin_width)) | ||
points(x_test, y_test,type = "p", pch = 19, col= "red") | ||
legend(55,85, legend=c("training", "test"), | ||
col=c("blue", "red"), pch = 19, cex = 0.5, bty = "y") | ||
for (b in 1:length(left_borders)) { | ||
lines(c(left_borders[b], right_borders[b]), c(g_head[b], g_head[b]), lwd = 2, col = "black") | ||
if (b < length(left_borders)) { | ||
lines(c(right_borders[b], right_borders[b]), c(g_head[b], g_head[b + 1]), lwd = 2, col = "black") | ||
} | ||
} | ||
|
||
# Calculate RMSE for regressogram | ||
distances <- sapply(1:length(y_test), function(i) { | ||
x_test_i <- x_test[i] | ||
bin <- get_bin_no(x_test_i) | ||
y_estimated_i <- g_head[bin] | ||
y_test_i <- y_test[i] | ||
diff <- y_test_i - y_estimated_i | ||
return(diff^2) | ||
}) | ||
RMSE <- sqrt(sum(distances) / length(distances)) | ||
sprintf("Regressogram => RMSE is %s when h is %s", RMSE, bin_width) | ||
|
||
# Running mean smoother | ||
g_head <- sapply(data_interval, function(x) { | ||
y_train_bin <- y_train[(x - 0.5 * bin_width) < x_train & x_train <= (x + 0.5 * bin_width)] | ||
return(mean(y_train_bin)) | ||
}) | ||
|
||
plot(x_train, y_train, type = "p", pch = 19, col = "blue", | ||
ylim = c(min(y_train), max(y_train)), xlim = c(minimum_value, maximum_value), | ||
ylab = "y", xlab = "x", las = 1, main = sprintf("h = %g", bin_width)) | ||
points(x_test, y_test,type = "p", pch = 19, col= "red") | ||
legend(55,85, legend=c("training", "test"), | ||
col=c("blue", "red"), pch = 19, cex = 0.5, bty = "y") | ||
for (b in 1:length(data_interval)) { | ||
lines(c(data_interval[b], data_interval[b+1]), c(g_head[b], g_head[b]), lwd = 2, col = "black") | ||
if (b < length(data_interval)) { | ||
lines(c(data_interval[b+1], data_interval[b+1]), c(g_head[b], g_head[b + 1]), lwd = 2, col = "black") | ||
} | ||
} | ||
|
||
# Calculate RMSE for running mean smoother | ||
get_interval_no <- function(v) { | ||
return(ceiling((v-minimum_value) / grid_interval)) | ||
} | ||
|
||
distances <- sapply(1:length(y_test), function(i) { | ||
x_test_i <- x_test[i] | ||
box <- get_interval_no(x_test_i) | ||
y_estimated_i <- g_head[box] | ||
y_test_i <- y_test[i] | ||
diff <- y_test_i - y_estimated_i | ||
return(diff^2) | ||
}) | ||
RMSE <- sqrt(sum(distances) / length(distances)) | ||
sprintf("Running Mean Smoother => RMSE is %s when h is %s", RMSE, bin_width) | ||
|
||
# Kernel Smoother | ||
bin_width <- 1 | ||
gaussian_kernel = function(u) { | ||
(1 / sqrt((2 * pi))) * exp(-u^2 / 2) | ||
} | ||
|
||
g_head <- sapply(data_interval, function(x) { | ||
nominator <- sapply(1:length(x_train), function(i) { | ||
u <- (x - x_train[i]) / bin_width | ||
kernel <- gaussian_kernel(u) | ||
return(kernel*y_train[i]) | ||
}) | ||
denominator <- sapply(1:length(x_train), function(i) { | ||
u <- (x - x_train[i]) / bin_width | ||
kernel <- gaussian_kernel(u) | ||
return(kernel) | ||
}) | ||
return(sum(nominator) / sum(denominator)) | ||
}) | ||
|
||
plot(x_train, y_train, type = "p", pch = 19, col = "blue", | ||
ylim = c(min(y_train), max(y_train)), xlim = c(minimum_value, maximum_value), | ||
ylab = "y", xlab = "x", las = 1, main = sprintf("h = %g", bin_width)) | ||
points(x_test, y_test,type = "p", pch = 19, col= "red") | ||
legend(55,85, legend=c("training", "test"), | ||
col=c("blue", "red"), pch = 19, cex = 0.5, bty = "y") | ||
for (b in 1:length(data_interval)) { | ||
lines(c(data_interval[b], data_interval[b+1]), c(g_head[b], g_head[b]), lwd = 2, col = "black") | ||
if (b < length(data_interval)) { | ||
lines(c(data_interval[b+1], data_interval[b+1]), c(g_head[b], g_head[b + 1]), lwd = 2, col = "black") | ||
} | ||
} | ||
|
||
#for (i in 1:length(x_test)) { | ||
# lines(c(x_test[i], x_test[i]), c(y_test[i], g_head[get_interval_no(x_test[i])]), lwd = 2, col = "black") | ||
#} | ||
|
||
# Calculate RMSE for kernel smoother | ||
distances <- sapply(1:length(y_test), function(i) { | ||
x_test_i <- x_test[i] | ||
box <- get_interval_no(x_test_i) | ||
y_estimated_i <- g_head[box] | ||
y_test_i <- y_test[i] | ||
diff <- y_test_i - y_estimated_i | ||
return(diff^2) | ||
}) | ||
RMSE <- sqrt(sum(distances) / length(distances)) | ||
sprintf("Kernel Smoother => RMSE is %s when h is %s", RMSE, bin_width) |