OpenSceneSense Ollama is a powerful Python package that brings advanced video analysis capabilities using Ollama's local models. By leveraging local AI models, this package offers frame analysis, audio transcription, dynamic frame selection, and comprehensive video summaries without relying on cloud-based APIs.
- π Why OpenSceneSense Ollama?
- π Features
- π¦ Installation
- π οΈ Usage
- βοΈ Configuration Options
- π― Customizing Prompts
- π Applications
- π οΈ Contributing
- π License
- π Additional Resources
OpenSceneSense Ollama brings the power of video analysis to your local machine. By using Ollama's models, you can:
- Run everything locally without depending on external APIs
- Maintain data privacy by processing videos on your own hardware
- Avoid usage costs associated with cloud-based solutions
- Customize and fine-tune models for your specific needs
- Process videos without internet connectivity
- πΈ Local Frame Analysis: Analyze visual elements using Ollama's vision models
- ποΈ Whisper Audio Transcription: Transcribe audio using local Whisper models
- π Dynamic Frame Selection: Automatically select the most relevant frames
- π Comprehensive Summaries: Generate cohesive summaries integrating visual and audio elements
- π οΈ Customizable Prompts: Tailor the analysis process with custom prompts
- π Metadata Extraction: Extract valuable video metadata
- Python 3.10+
- FFmpeg
- Ollama installed and running
- NVIDIA GPU (recommended)
- CUDA 12.1 or later (for GPU support)
First, install PyTorch with CUDA 12.1 support:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
Install Transformers and other required packages:
pip install transformers
sudo apt update
sudo apt install ffmpeg
brew install ffmpeg
- Download FFmpeg from ffmpeg.org/download.html
- Extract and add to PATH
pip install openscenesense-ollama
Here's a complete example showing how to use OpenSceneSense Ollama:
from openscenesense_ollama.models import AnalysisPrompts
from openscenesense_ollama.transcriber import WhisperTranscriber
from openscenesense_ollama.analyzer import OllamaVideoAnalyzer
from openscenesense_ollama.frame_selectors import DynamicFrameSelector
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# Initialize Whisper transcriber
transcriber = WhisperTranscriber(
model_name="openai/whisper-tiny"
)
# Custom prompts for analysis
custom_prompts = AnalysisPrompts(
frame_analysis="Analyze this frame focusing on visible elements, actions, and their relationship with any audio.",
detailed_summary="""Create a comprehensive narrative that cohesively integrates visual and audio elements into a single story or summary from this
{duration:.1f}-second video:\n\nVideo Timeline:\n{timeline}\n\nAudio Transcript:\n{transcript}""",
brief_summary="""Based on this {duration:.1f}-second video timeline and audio transcript:\n{timeline}\n\n{transcript}\n
Provide a concise cohesive short summary combining the key visual and audio elements."""
)
# Initialize analyzer
analyzer = OllamaVideoAnalyzer(
frame_analysis_model="minicpm-v",
summary_model="llama3.2",
min_frames=10,
max_frames=64,
frames_per_minute=10.0,
frame_selector=DynamicFrameSelector(),
audio_transcriber=transcriber,
prompts=custom_prompts,
log_level=logging.INFO
)
# Analyze video
video_path = "your_video.mp4"
results = analyzer.analyze_video(video_path)
# Print results
print("\nBrief Summary:")
print(results['brief_summary'])
print("\nDetailed Summary:")
print(results['summary'])
print("\nVideo Timeline:")
print(results['timeline'])
print("\nMetadata:")
for key, value in results['metadata'].items():
print(f"{key}: {value}")
The OllamaVideoAnalyzer
class offers extensive configuration options to customize the analysis process:
-
frame_analysis_model (str, default="minicpm-v")
- The Ollama model to use for analyzing individual frames
- Common options: "llava", "minicpm-v", "bakllava"
- Choose models with vision capabilities for best results
-
summary_model (str, default="llama3.2")
- The Ollama model used for generating video summaries
- Common options: "llama3.2", "mistral", "claude-3-haiku"
- Text-focused models work best for summarization
-
host (str, default="http://localhost:11434")
- The URL where your Ollama instance is running
- Modify if running Ollama on a different port or remote server
-
min_frames (int, default=8)
- Minimum number of frames to analyze
- Lower values result in faster analysis but might miss details
- Recommended range: 6-12 for short videos
-
max_frames (int, default=64)
- Maximum number of frames to analyze
- Higher values provide more detailed analysis but increase processing time
- Consider your hardware capabilities when adjusting this
-
frames_per_minute (float, default=4.0)
- Target rate of frame extraction
- Higher values capture more temporal detail
- Balance between detail and processing time
- Recommended ranges:
- 2-4 fps: Simple videos with minimal action
- 4-8 fps: Standard content
- 8+ fps: Fast-paced or complex scenes
-
frame_selector (Optional[FrameSelector], default=None)
- Custom frame selection strategy
- Defaults to basic uniform selection if None
- Available built-in selectors:
DynamicFrameSelector
: Adapts to scene changesUniformFrameSelector
: Evenly spaced framesContentAwareSelector
: Selects based on visual importance
-
audio_transcriber (Optional[AudioTranscriber], default=None)
- Component for handling audio transcription
- Defaults to no audio processing if None
- Common options:
WhisperTranscriber( model_name="openai/whisper-tiny", device="cuda" # or "cpu" )
-
prompts (Optional[AnalysisPrompts], default=None)
- Customized prompts for different analysis stages
- Defaults to standard prompts if None
- Customize using the
AnalysisPrompts
class
-
custom_frame_processor (Optional[Callable[[Frame], Dict]], default=None)
- Custom function for processing individual frames
- Allows integration of additional analysis tools
- Must accept a Frame object and return a dictionary
- Example:
def custom_processor(frame: Frame) -> Dict: return { "timestamp": frame.timestamp, "custom_data": your_analysis(frame.image) }
-
log_level (int, default=logging.INFO)
- Controls verbosity of logging output
- Common levels:
logging.DEBUG
: Detailed debugging informationlogging.INFO
: General operational informationlogging.WARNING
: Warning messages onlylogging.ERROR
: Error messages only
Here's an example of a fully configured analyzer with custom settings:
analyzer = OllamaVideoAnalyzer(
frame_analysis_model="llava",
summary_model="llama3.2",
host="http://localhost:11434",
min_frames=12,
max_frames=48,
frames_per_minute=6.0,
frame_selector=DynamicFrameSelector(
threshold=0.3,
min_scene_length=1.0
),
audio_transcriber=WhisperTranscriber(
model_name="openai/whisper-base",
device="cuda"
),
prompts=AnalysisPrompts(
frame_analysis="Detailed frame analysis prompt...",
detailed_summary="Custom summary template...",
brief_summary="Brief summary template..."
),
custom_frame_processor=your_custom_processor,
log_level=logging.DEBUG
)
OpenSceneSense Ollama allows you to customize prompts for different types of analyses. The AnalysisPrompts
class accepts the following parameters:
- frame_analysis: Guide the model's focus during frame analysis
- detailed_summary: Template for comprehensive video summaries
- brief_summary: Template for concise summaries
Available template tags:
{duration}
: Video duration in seconds{timeline}
: Generated timeline of events{transcript}
: Audio transcript
OpenSceneSense Ollama is ideal for:
- Content Creation: Automatically generate video descriptions and summaries
- Education: Analyze educational content and create study materials
- Research: Build datasets for computer vision research
- Local Content Moderation: Monitor video content while maintaining privacy
- Offline Analysis: Process sensitive videos without internet connectivity
Contributions are welcome! Here's how you can help:
- Fork the repository
- Create a feature branch:
git checkout -b feature/YourFeature
- Commit changes:
git commit -m "Add YourFeature"
- Push to branch:
git push origin feature/YourFeature
- Submit a pull request
Distributed under the MIT License. See for more information.