Code to accompany our paper: Points2Plans: From Point Clouds to Long-Horizon Plans with Composable Relational Dynamics. [PDF] [Website]
This repository includes:
- 🛠️ A relational dynamics model that excels at long-horizon prediction of point cloud states without the need to train on multi-step data
- 🚀 A latent-geometric space dynamics rollout strategy that significantly increases the horizons over which predicted point cloud states are reliable for planning
- 🦾 A task planning and goal prediction module using Large Language Models (LLMs)
This codebase is primarily tested on Ubuntu 20.04, an NVIDIA GeForce RTX 3090 Ti, and CUDA 11.7.
conda env create -f conda_env.yml
python LLM/scripts/llm_planner.py \
--model-config LLM/configs/models/pretrained/generative/$Model \
--prompt-config LLM/configs/prompts/evaluation/p1/$Task \
--api-key $YourAPIKey
- Download pretrained models from this link
- Download test data for constrained packing task
python relational_dynamics/main.py \
--result_dir $PretrainedModelDir \
--checkpoint_path $PretrainedModelDir/checkpoint/pretrained.pth \
--test_dir $TestDataDir \
--test_max_size $TestSize
- Download training datasets
To generate your own data, please refer to our simulation repository using [isaacgym].
python relational_dynamics/main.py \
--result_dir $YourResultDir \
--train_dir $TrainingDataDir \
--batch_size $BatchSize \
--num_epochs $TrainingEpochs \
--max_size $TrainingSize
Baseline: eRDTransformer
python relational_dynamics/main.py \
--result_dir $YourResultDir \
--train_dir $TrainingDataDir \
--batch_size $BatchSize \
--num_epochs $TrainingEpochs \
--delta_forward False \
--latent_forward True \
--max_size $TrainingSize
- Download pretrained models from this link
python relational_dynamics/main.py \
--result_dir $PretrainedModelDir \
--checkpoint_path $PretrainedModelDir/checkpoint/baseline_pretrained.pth \
--test_dir $TestDataDir \
--delta_forward False \
--latent_forward True \
--test_max_size $TestSize
If you find our work useful in your research, please cite:
@misc{huang-2024-points2plans,
author = {Yixuan Huang and Christopher Agia and Jimmy Wu and Tucker Hermans and Jeannette Bohg},
title = {{Points2Plans: From Point Clouds to Long-Horizon Plans with Composable Relational Dynamics}},
url = {sites.google.com/stanford.edu/points2plans},
year = 2024
}