Skip to content

Commit

Permalink
fixed
Browse files Browse the repository at this point in the history
  • Loading branch information
yoyoyo-yo committed Mar 13, 2019
1 parent 5310f81 commit 6f2017e
Show file tree
Hide file tree
Showing 11 changed files with 1,266 additions and 156 deletions.
346 changes: 346 additions & 0 deletions Question_91_100/answers/_answer_100.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,346 @@
import cv2
import numpy as np

np.random.seed(0)

# read image
img = cv2.imread("imori_1.jpg")
H, W, C = img.shape

# Grayscale
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]

gt = np.array((47, 41, 129, 103), dtype=np.float32)

cv2.rectangle(img, (gt[0], gt[1]), (gt[2], gt[3]), (0,255,255), 1)

def iou(a, b):
area_a = (a[2] - a[0]) * (a[3] - a[1])
area_b = (b[2] - b[0]) * (b[3] - b[1])
iou_x1 = np.maximum(a[0], b[0])
iou_y1 = np.maximum(a[1], b[1])
iou_x2 = np.minimum(a[2], b[2])
iou_y2 = np.minimum(a[3], b[3])
iou_w = max(iou_x2 - iou_x1, 0)
iou_h = max(iou_y2 - iou_y1, 0)
area_iou = iou_w * iou_h
iou = area_iou / (area_a + area_b - area_iou)
return iou


def hog(gray):
h, w = gray.shape
# Magnitude and gradient
gray = np.pad(gray, (1, 1), 'edge')

gx = gray[1:h+1, 2:] - gray[1:h+1, :w]
gy = gray[2:, 1:w+1] - gray[:h, 1:w+1]
gx[gx == 0] = 0.000001

mag = np.sqrt(gx ** 2 + gy ** 2)
gra = np.arctan(gy / gx)
gra[gra<0] = np.pi / 2 + gra[gra < 0] + np.pi / 2

# Gradient histogram
gra_n = np.zeros_like(gra, dtype=np.int)

d = np.pi / 9
for i in range(9):
gra_n[np.where((gra >= d * i) & (gra <= d * (i+1)))] = i

N = 8
HH = h // N
HW = w // N
Hist = np.zeros((HH, HW, 9), dtype=np.float32)
for y in range(HH):
for x in range(HW):
for j in range(N):
for i in range(N):
Hist[y, x, gra_n[y*4+j, x*4+i]] += mag[y*4+j, x*4+i]

## Normalization
C = 3
eps = 1
for y in range(HH):
for x in range(HW):
#for i in range(9):
Hist[y, x] /= np.sqrt(np.sum(Hist[max(y-1,0):min(y+2, HH), max(x-1,0):min(x+2, HW)] ** 2) + eps)

return Hist

def resize(img, h, w):
_h, _w = img.shape
ah = 1. * h / _h
aw = 1. * w / _w
y = np.arange(h).repeat(w).reshape(w, -1)
x = np.tile(np.arange(w), (h, 1))
y = (y / ah)
x = (x / aw)

ix = np.floor(x).astype(np.int32)
iy = np.floor(y).astype(np.int32)
ix = np.minimum(ix, _w-2)
iy = np.minimum(iy, _h-2)

dx = x - ix
dy = y - iy

out = (1-dx) * (1-dy) * img[iy, ix] + dx * (1 - dy) * img[iy, ix+1] + (1 - dx) * dy * img[iy+1, ix] + dx * dy * img[iy+1, ix+1]
out[out>255] = 255

return out


class NN:
def __init__(self, ind=2, w=64, w2=64, outd=1, lr=0.1):
self.w2 = np.random.randn(ind, w)
self.b2 = np.random.randn(w)
self.w3 = np.random.randn(w, w2)
self.b3 = np.random.randn(w2)
self.wout = np.random.randn(w2, outd)
self.bout = np.random.randn(outd)
self.lr = lr

def forward(self, x):
self.z1 = x
self.z2 = self.sigmoid(np.dot(self.z1, self.w2) + self.b2)
self.z3 = self.sigmoid(np.dot(self.z2, self.w3) + self.b3)
self.out = self.sigmoid(np.dot(self.z3, self.wout) + self.bout)
return self.out

def train(self, x, t):
# backpropagation output layer
out_d = 2*(self.out - t) * self.out * (1 - self.out)
out_dW = np.dot(self.z3.T, out_d)
out_dB = np.dot(np.ones([1, out_d.shape[0]]), out_d)
self.wout -= self.lr * out_dW
self.bout -= self.lr * out_dB[0]

w3_d = np.dot(out_d, self.wout.T) * self.z3 * (1 - self.z3)
w3_dW = np.dot(self.z2.T, w3_d)
w3_dB = np.dot(np.ones([1, w3_d.shape[0]]), w3_d)
self.w3 -= self.lr * w3_dW
self.b3 -= self.lr * w3_dB[0]

# backpropagation inter layer
w2_d = np.dot(w3_d, self.w3.T) * self.z2 * (1 - self.z2)
w2_dW = np.dot(self.z1.T, w2_d)
w2_dB = np.dot(np.ones([1, w2_d.shape[0]]), w2_d)
self.w2 -= self.lr * w2_dW
self.b2 -= self.lr * w2_dB[0]

def sigmoid(self, x):
return 1. / (1. + np.exp(-x))

# crop and create database

Crop_num = 200
L = 60
H_size = 32
F_n = ((H_size // 8) ** 2) * 9

db = np.zeros((Crop_num, F_n+1))

for i in range(Crop_num):
x1 = np.random.randint(W-L)
y1 = np.random.randint(H-L)
x2 = x1 + L
y2 = y1 + L
crop = np.array((x1, y1, x2, y2))

_iou = iou(gt, crop)

if _iou >= 0.5:
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 1)
label = 1
else:
cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 1)
label = 0

crop_area = gray[y1:y2, x1:x2]
crop_area = resize(crop_area, H_size, H_size)
_hog = hog(crop_area)

db[i, :F_n] = _hog.ravel()
db[i, -1] = label


## training neural network
nn = NN(ind=F_n, lr=0.01)
for i in range(10000):
nn.forward(db[:, :F_n])
nn.train(db[:, :F_n], db[:, -1][..., None])


# read detect target image
img2 = cv2.imread("imori_many.jpg")
H2, W2, C2 = img2.shape

# Grayscale
gray2 = 0.2126 * img2[..., 2] + 0.7152 * img2[..., 1] + 0.0722 * img2[..., 0]

# [h, w]
recs = np.array(((42, 42), (56, 56), (70, 70)), dtype=np.float32)

detects = np.ndarray((0, 5), dtype=np.float32)

# sliding window
for y in range(0, H2, 4):
for x in range(0, W2, 4):
for rec in recs:
dh = int(rec[0] // 2)
dw = int(rec[1] // 2)
x1 = max(x-dw, 0)
x2 = min(x+dw, W2)
y1 = max(y-dh, 0)
y2 = min(y+dh, H2)
region = gray2[max(y-dh,0):min(y+dh,H2), max(x-dw,0):min(x+dw,W2)]
region = resize(region, H_size, H_size)
region_hog = hog(region).ravel()

score = nn.forward(region_hog)
if score >= 0.7:
#cv2.rectangle(img2, (x1, y1), (x2, y2), (0,0,255), 1)
detects = np.vstack((detects, np.array((x1, y1, x2, y2, score))))


# Non-maximum suppression
def nms(_bboxes, iou_th=0.5, select_num=None, prob_th=None):
#
# Non Maximum Suppression
#
# Argument
# bboxes(Nx5) ... [bbox-num, 5(leftTopX,leftTopY,w,h, score)]
# iou_th([float]) ... threshold for iou between bboxes.
# select_num([int]) ... max number for choice bboxes. If None, this is unvalid.
# prob_th([float]) ... probability threshold to choice. If None, this is unvalid.
# Return
# inds ... choced indices for bboxes
#

bboxes = _bboxes.copy()

bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]
bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]

# Sort by bbox's score. High -> Low
sort_inds = np.argsort(bboxes[:, -1])[::-1]

processed_bbox_ind = []
return_inds = []

unselected_inds = sort_inds.copy()

while len(unselected_inds) > 0:
process_bboxes = bboxes[unselected_inds]
argmax_score_ind = np.argmax(process_bboxes[::, -1])
max_score_ind = unselected_inds[argmax_score_ind]
return_inds += [max_score_ind]
unselected_inds = np.delete(unselected_inds, argmax_score_ind)

base_bbox = bboxes[max_score_ind]
compare_bboxes = bboxes[unselected_inds]

base_x1 = base_bbox[0]
base_y1 = base_bbox[1]
base_x2 = base_bbox[2] + base_x1
base_y2 = base_bbox[3] + base_y1
base_w = np.maximum(base_bbox[2], 0)
base_h = np.maximum(base_bbox[3], 0)
base_area = base_w * base_h

# compute iou-area between base bbox and other bboxes
iou_x1 = np.maximum(base_x1, compare_bboxes[:, 0])
iou_y1 = np.maximum(base_y1, compare_bboxes[:, 1])
iou_x2 = np.minimum(base_x2, compare_bboxes[:, 2] + compare_bboxes[:, 0])
iou_y2 = np.minimum(base_y2, compare_bboxes[:, 3] + compare_bboxes[:, 1])
iou_w = np.maximum(iou_x2 - iou_x1, 0)
iou_h = np.maximum(iou_y2 - iou_y1, 0)
iou_area = iou_w * iou_h

compare_w = np.maximum(compare_bboxes[:, 2], 0)
compare_h = np.maximum(compare_bboxes[:, 3], 0)
compare_area = compare_w * compare_h

# bbox's index which iou ratio over threshold is excluded
all_area = compare_area + base_area - iou_area
iou_ratio = np.zeros((len(unselected_inds)))
iou_ratio[all_area < 0.9] = 0.
_ind = all_area >= 0.9
iou_ratio[_ind] = iou_area[_ind] / all_area[_ind]

unselected_inds = np.delete(unselected_inds, np.where(iou_ratio >= iou_th)[0])

if prob_th is not None:
preds = bboxes[return_inds][:, -1]
return_inds = np.array(return_inds)[np.where(preds >= prob_th)[0]].tolist()

# pick bbox's index by defined number with higher score
if select_num is not None:
return_inds = return_inds[:select_num]

return return_inds


detects = detects[nms(detects, iou_th=0.25)]


# Evaluation

# [x1, y1, x2, y2]
GT = np.array(((27, 48, 95, 110), (101, 75, 171, 138)), dtype=np.float32)

## Recall, Precision, F-score
iou_th = 0.5

Rs = np.zeros((len(GT)))
Ps = np.zeros((len(detects)))

for i, g in enumerate(GT):
iou_x1 = np.maximum(g[0], detects[:, 0])
iou_y1 = np.maximum(g[1], detects[:, 1])
iou_x2 = np.minimum(g[2], detects[:, 2])
iou_y2 = np.minimum(g[3], detects[:, 3])
iou_w = np.maximum(0, iou_x2 - iou_x1)
iou_h = np.maximum(0, iou_y2 - iou_y1)
iou_area = iou_w * iou_h
g_area = (g[2] - g[0]) * (g[3] - g[1])
d_area = (detects[:, 2] - detects[:, 0]) * (detects[:, 3] - detects[:, 1])
ious = iou_area / (g_area + d_area - iou_area)

Rs[i] = 1 if len(np.where(ious >= iou_th)[0]) > 0 else 0
Ps[ious >= iou_th] = 1


R = np.sum(Rs) / len(Rs)
P = np.sum(Ps) / len(Ps)
F = (2 * P * R) / (P + R)

print("Recall >> {:.2f} ({} / {})".format(R, np.sum(Rs), len(Rs)))
print("Precision >> {:.2f} ({} / {})".format(P, np.sum(Ps), len(Ps)))
print("F-score >> ", F)

## mAP
mAP = 0.
for i in range(len(detects)):
mAP += np.sum(Ps[:i]) / (i + 1) * Ps[i]
mAP /= np.sum(Ps)

print("mAP >>", mAP)

# Display
for i in range(len(detects)):
v = list(map(int, detects[i, :4]))
if Ps[i] > 0:
cv2.rectangle(img2, (v[0], v[1]), (v[2], v[3]), (0,0,255), 1)
else:
cv2.rectangle(img2, (v[0], v[1]), (v[2], v[3]), (255,0,0), 1)
cv2.putText(img2, "{:.2f}".format(detects[i, -1]), (v[0], v[1]+9),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,0,255), 1)

for g in GT:
cv2.rectangle(img2, (g[0], g[1]), (g[2], g[3]), (0,255,0), 1)

cv2.imwrite("out.jpg", img2)
cv2.imshow("result", img2)
cv2.waitKey(0)
Loading

0 comments on commit 6f2017e

Please sign in to comment.