PyTorch code for the ICCV 2023 paper:
Knowledge Restore and Transfer for Multi-Label Class-Incremental Learning
Songlin Dong, Haoyu Luo, Yuhang He, Xing Wei, Jie Cheng and Yihong Gong
IEEE/CVF International Conference on Computer Vision 2023
https://openaccess.thecvf.com/content/ICCV2023/html/Dong_Knowledge_Restore_and_Transfer_for_Multi-Label_Class-Incremental_Learning_ICCV_2023_paper.html
Current class-incremental learning research mainly focuses on single-label classification tasks while multi-label class-incremental learning (MLCIL) with more practical application scenarios is rarely studied. Although there have been many anti-forgetting methods to solve the problem of catastrophic forgetting in single-label class-incremental learning, these methods have difficulty in solving the MLCIL problem due to label absence and information dilution problems. To solve these problems, we propose a Knowledge Restore and Transfer (KRT) framework including a dynamic pseudo-label (DPL) module to solve the label absence problem by restoring the knowledge of old classes to the new data and an incremental cross-attention (ICA) module with session-specific knowledge retention tokens storing knowledge and a unified knowledge transfer token transferring knowledge to solve the information dilution problem. Comprehensive experimental results on MS-COCO and PASCAL VOC datasets demonstrate the effectiveness of our method for improving recognition performance and mitigating forgetting on multi-label class-incremental learning tasks.
Data partitioning is found in src/helper_functions/IncrementalDataset.py
Install anaconda: https://www.anaconda.com/distribution/
set up conda environment w/ python 3.7, ex: conda create --name coda python=3.7
conda activate coda
pip install -r requirements.txt
NOTE: this framework was tested using torch == 1.11.0
but should work for previous versions
timm ==0.5.4 inplace_abn=1.1.0
Download MS-COCO 2014
Put the dataset as ./datasets/coco2014
Donwload PASCAL VOC 2007
Put the dataset as ./datasets/voc2007
TResNetM pretrained on ImageNet 21k is available at TResNetM_pretrained_model, download it to ./pretrained_models and rename it as tresnet_m_224_21k.pth
All commands should be run under the project root directory. The scripts are set up for 2 GPUs but can be modified for your hardware.
sh train_mlcil_coco.sh
sh train_mlcil_voc.sh
Results will be saved in a folder named logs/
. To get the exprimental detail, retrieve the number in the file logs/**/log/log.txt
The model for the incremental stage is stored under saved_models/
If you found our work useful for your research, please cite our work:
@InProceedings{dong2023knowledge,
title={Knowledge Restore and Transfer for Multi-Label Class-Incremental Learning},
author={Dong, Songlin and Luo, Haoyu and He, Yuhang and Wei, Xing and Cheng, Jie and Gong, Yihong},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={18711--18720},
year={2023}
}