Skip to content

xg1990/aws-sagemaker-demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AWS SageMaker Example

This is the source code for the Medium article https://medium.com/weareservian/machine-learning-on-aws-sagemaker-53e1a5e218d9

Before successfully running this code, you may need to fill in your personal configurations (e.g. S3 bucket name)

Pre-requisite

  • Python3
  • AWS SDK
  • Docker
  • Terraform (optional)

Setup AWS resources

By default AWS region ap-southeast-2 is used. Change terraform config if necessary

export AWS_DEFAULT_REGION=ap-southeast-2
cd terraform
terraform init # for the first time
terraform apply
terraform output --json > ../sagemaker/cloud_config.json
cd ..

Generate Demo data

python data/generate.py --output data/data.csv

Test in local environment

python sagemaker/jobsubmit.py --local

Invocate Local endpoint

curl --location --request POST '127.0.0.1:8080/invocations' \
     --header 'Content-Type: application/json' \
     --data-raw '[[1,2,3,4,5,6,7,8,19,10],[1,2,3,4,5,6,7,8,9,10]]'

Upload data to s3 bucket

aws s3 cp data/data.csv s3://$(cd terraform && terraform output s3bucket | tr -d '"')/

Submit to AWS cloud

python sagemaker/jobsubmit.py

Invocate Remote endpoint

python sagemaker/invoke.py

Clean up Cloud environment

cd terraform
terraform destroy
cd ..

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •