-
Semi-supervised Deep Representation Learning for Multi-View Problems
- Vahid Noroozi, Sara Bahaadini, Lei Zheng, Sihong Xie, Weixiang Shao, Philip S. Yu, IEEE Big Data, arXiv:1811
- CCA
-
Product Title Refinement via Multi-Modal Generative Adversarial Learning
- Jianguo Zhang, Pengcheng Zou, Zhao Li, Yao Wan, Ye Liu, Xiuming Pan, Yu Gong, Philip S. Yu, NIPS workshop, arXiv:1811
- GAN
-
Feature Selection with Multi-view Data: A Survey
- R Zhang, F Nie, X Li, X Wei - Information Fusion, 2018
- (doi)
-
A Survey on Multi-view Learning
- Chang Xu, Dacheng Tao, Chao Xu, arXiv:1304
-
A Survey of Multi-View Representation Learning
- Yingming Li ; Ming Yang ; Zhongfei Mark Zhang, TKDE, 1809
-
Learning Representation for Multi-View Data Analysis: Models and Applications
- Zhengming DingHandong ZhaoYun Fu Link
-
Robust and efficient multi-way spectral clustering, [matlab]
- Anil Damle, Victor Minden, Lexing Ying, arXiv:1609
-
ICML 2018, Fast Approximate Spectral Clustering for Dynamic Networks -Lionel Martin, Andreas Loukas, Pierre Vandergheynst, arXiv:1706
-
Efficient Kernel Selection via Spectral Analysis Jian Li, Yong Liu, Hailun Lin, Yinliang Yue, Weiping Wang (PDF | Details)
-
Beyond the Nystrom Approximation: Speeding up Spectral Clustering using Uniform Sampling and Weighted Kernel k-means
-
Guided Graph Spectral Embedding: Application to the C. elegans Connectome
- M Petrović, TAW Bolton, MG Preti, R Liégeois
- (arXiv:1812)
- A fast implementation of spectral clustering on GPU-CPU Platform
- Jin, Yu and JaJa, Joseph F,
- code
-
ICML 2018, k-means clustering using random matrix sparsification
-
Scalable Normalized Cut with Improved Spectral Rotation
-
Differentially Private k-Means with Constant Multiplicative Error
- U Stemmer, H Kaplan
- (PDF | Supplemental | Poster)
-
Statistical and Computational Trade-Offs in Kernel k-Means
- Daniele Calandriello, Lorenzo Rosasco
- (PDF | Supplemental)
-
Query k-means Clustering and the Double Dixie Cup Problem
- I Chien, Chao Pan, Olgica Milenkovic
- (PDF | Supplemental)
-
Sparse embedded k-means clustering
- Weiwei Liu, Xiaobo Shen, Ivor Tsang
- (PDF | Supplemental | Reviews)
-
k-Medoids For k-Means Seeding
- James Newling, François Fleuret
- (PDF | Supplemental | Reviews)
-
Clustering Stable Instances of Euclidean k-means
- Aravindan Vijayaraghavan, Abhratanu Dutta, Alex Wang
- (PDF | Supplemental | Reviews)
-
Approximation Bounds for Hierarchical Clustering: Average Linkage, Bisecting k-means, and Local Search
- Benjamin Moseley, Joshua Wang
- (PDF | Supplemental | Reviews)
- Fast and Provably Good Seedings for k-Means
- Olivier Bachem, Mario Lucic, Hamed Hassani, Andreas Krause
- (PDF | Supplemental | Reviews)
-
k-variates++: more pluses in the k-means++
- Richard Nock, Raphael Canyasse, Roksana Boreli, Frank Nielsen
- (PDF | Supplementary Material)
-
Fast k-means with accurate bounds
- James Newling, Francois Fleuret
- (PDF | Supplementary Material)
-
k-Means Clustering with Distributed Dimensions
- Hu Ding, Yu Liu, Lingxiao Huang, Jian Li
- (PDF | Supplementary Material)
-
Speeding up k-means by approximating Euclidean distances via block vectors
- Thomas Bottesch, Thomas Bühler, Markus Kächele ; PMLR 48:2578-2586
- (PDF]
-
On deep multi-view representation learning, [pdf]
-
Weiran Wang, Raman Arora, Karen Livescu, Jeff Bilmes, arXiv:1602
-
Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation
- Edward Smith, Scott Fujimoto, David Meger
-
Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple Kernels
- Shahin Shahrampour, Vahid Tarokh
-
Multimodal Generative Models for Scalable Weakly-Supervised Learning
- Mike Wu, Noah Goodman
-
Mental Sampling in Multimodal Representations
- Jianqiao Zhu, Adam Sanborn, Nick Chater
-
Unsupervised Cross-Modal Alignment of Speech and Text Embedding Spaces
- Yu-An Chung, Wei-Hung Weng, Schrasing Tong, James Glass
-
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
- HOLDEN LEE, Andrej Risteski, Rong Ge
-
Multi-view Matrix Factorization for Linear Dynamical System Estimation
- Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari
-
Learning a Multi-View Stereo Machine
- Abhishek Kar, Christian Häne, Jitendra Malik
-
Multi-View Decision Processes: The Helper-AI Problem
- Christos Dimitrakakis, David C. Parkes, Goran Radanovic, Paul Tylkin
- Predictive Subspace Learning for Multi-view Data: a Large Margin Approach
- Ning Chen, Jun Zhu, Eric P. Xing
- (PDF | Details | Supplemental | TPAMI)
- Large-Margin Predictive Latent Subspace Learning for Multiview Data Analysis
- Ning Chen; Jun Zhu; Fuchun Sun; Eric Poe Xing
-
Deep Multi-View Concept Learning, [pdf]
- Cai Xu, Ziyu Guan, Wei Zhao, Yunfei Niu, Quan Wang, Zhiheng Wang
-
Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders, [pdf]
- Tengfei Ma, Cao Xiao, Jiayu Zhou, Fei Wang
-
Quality Matters: Assessing cQA Pair Quality via Transductive Multi-View Learning, [pdf]
- Xiaochi Wei, Heyan Huang, Liqiang Nie, Fuli Feng, Richang Hong, Tat-Seng Chua
-
Robust Multi-view Representation: A Unified Perspective from Multi-view Learning to Domain Adaption, [pdf]
- Zhengming Ding, Ming Shao, Yun Fu
-
Hierarchical Graph Structure Learning for Multi-View 3D Model Retrieval, [pdf]
- Yuting Su, Wenhui Li, Anan Liu, Weizhi Nie
-
CR-GAN: Learning Complete Representations for Multi-view Generation, [pdf]
- Yu Tian, Xi Peng, Long Zhao, Shaoting Zhang, Dimitris N. Metaxas
-
Adaptive Collaborative Similarity Learning for Unsupervised Multi-view Feature Selection, [pdf]
- Xiao Dong, Lei Zhu, Xuemeng Song, Jingjing Li, Zhiyong Cheng
-
Doubly Aligned Incomplete Multi-view Clustering, [pdf]
- Menglei Hu, Songcan Chen
-
Robust Auto-Weighted Multi-View Clustering, [pdf]
- Pengzhen Ren, Yun Xiao, Pengfei Xu, Jun Guo, Xiaojiang Chen, Xin Wang, Dingyi Fang
-
Incomplete Multi-View Weak-Label Learning, [pdf]
- Qiaoyu Tan, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Zili Zhang
-
FISH-MML: Fisher-HSIC Multi-View Metric Learning, [pdf]
- Changqing Zhang, Yeqinq Liu, Yue Liu, Qinghua Hu, Xinwang Liu, Pengfei Zhu
-
Robust Multi-view Learning via Half-quadratic Minimization, [pdf]
- Yonghua Zhu, Xiaofeng Zhu, Wei Zheng
-
Semi
-Supervised Multi-Modal Learning with Incomplete Modalities, [pdf]- Yang Yang, De-Chuan Zhan, Xiang-Rong Sheng, Yuan Jiang
-
Self-weighted Multiple Kernel Learning for Graph-based Clustering and
Semi
-supervised Classification, [pdf]- Zhao Kang, Xiao Lu, Jinfeng Yi, Zenglin Xu
-
Self-weighted Multiview Clustering with Multiple Graphs
-
Vertex-Weighted Hypergraph Learning for Multi-View Object Classification
-
From Ensemble Clustering to Multi-View Clustering
-
Multiple Medoids based Multi-view Relational Fuzzy Clustering with Minimax Optimization
-
Dynamic Multi-View Hashing for Online Image Retrieval
-
Multi-view Feature Learning with Discriminative Regularization
-
Nonlinear Maximum Margin Multi-View Learning with Adaptive Kernel
-
Vertex-Weighted Hypergraph Learning for Multi-View Object Classification
-
Approximating Discrete Probability Distribution of Image Emotions by Multi-Modal Features Fusion
-
Multiple Kernel Clustering Framework with Improved Kernels
-
Approximate Large-scale Multiple Kernel k-means Using Deep Neural Network
-
Multiple Indefinite Kernel Learning for Feature Selection
-
Iterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering
- Yang Wang, Wenjie Zhang, Lin Wu, Xuemin Lin, Meng Fang, Shirui Pan, arXiv:1608
-
Multiple Kernel Clustering with Local Kernel Alignment Maximization, [pdf]
- Miaomiao Li, Xinwang Liu, Lei Wang, Yong Dou, Jianping Yin, En Zhu
-
Multi-View Learning with Limited and Noisy Tagging, [pdf]
- Yingming Li, Ming Yang, Zenglin Xu, Zhongfei (Mark) Zhang
- MEAL: Multi-Model Ensemble via Adversarial Learning
- Zhiqiang Shen, Zhankui He, Xiangyang Xue
- (arXiv:1812 | pytorch)
-
A Multi-view & Multi-exemplar Fuzzy Clustering Approach: Theoretical Analysis and Experimental Studies
- Zhang Yuanpeng ; Fu-lai Chung ; ShiTong Wang
- (DOI)
-
Deep Collective Matrix Factorization for Augmented Multi-View Learning
- R Mariappan, V Rajan
- (arXiv: 1811)
- When Locally Linear Embedding Hits Boundary
- Hau-tieng Wu, Nan Wu, arXiv:1811