Skip to content

Commit

Permalink
trunk: Adding DNN-based speaker recognition recipe in egs/sre10
Browse files Browse the repository at this point in the history
git-svn-id: https://svn.code.sf.net/p/kaldi/code/trunk@5223 5e6a8d80-dfce-4ca6-a32a-6e07a63d50c8
  • Loading branch information
david-ryan-snyder committed Jul 10, 2015
1 parent 189c774 commit 55d8f86
Show file tree
Hide file tree
Showing 31 changed files with 2,833 additions and 3 deletions.
94 changes: 94 additions & 0 deletions egs/sre08/v1/sid/extract_ivectors_dnn.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
#!/bin/bash

# Copyright 2013 Daniel Povey
# 2014-2015 David Snyder
# 2015 Johns Hopkins University (Author: Daniel Garcia-Romero)
# 2015 Johns Hopkins University (Author: Daniel Povey)
# Apache 2.0.

# This script extracts iVectors for a set of utterances, given
# features and a trained DNN-based iVector extractor.

# Begin configuration section.
nj=30
cmd="run.pl"
stage=0
min_post=0.025 # Minimum posterior to use (posteriors below this are pruned out)
posterior_scale=1.0 # This scale helps to control for successive features being highly
# correlated. E.g. try 0.1 or 0.3.
# End configuration section.

echo "$0 $@" # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;


if [ $# != 5 ]; then
echo "Usage: $0 <extractor-dir> <data> <ivector-dir>"
echo " e.g.: $0 exp/extractor_2048_male data/train_male exp/ivectors_male"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-iters <#iters|10> # Number of iterations of E-M"
echo " --nj <n|10> # Number of jobs (also see num-processes and num-threads)"
echo " --num-threads <n|8> # Number of threads for each process"
echo " --stage <stage|0> # To control partial reruns"
echo " --num-gselect <n|20> # Number of Gaussians to select using"
echo " # diagonal model."
echo " --min-post <min-post|0.025> # Pruning threshold for posteriors"
exit 1;
fi

srcdir=$1
nnet=$2
data=$3
data_dnn=$4
dir=$5

for f in $srcdir/final.ie $srcdir/final.ubm $data/feats.scp ; do
[ ! -f $f ] && echo "No such file $f" && exit 1;
done

# Set various variables.
mkdir -p $dir/log
sdata=$data/split$nj;
utils/split_data.sh $data $nj || exit 1;

sdata_dnn=$data_dnn/split$nj;
utils/split_data.sh $data_dnn $nj || exit 1;

delta_opts=`cat $srcdir/delta_opts 2>/dev/null`

splice_opts=`cat exp/nnet//splice_opts 2>/dev/null` # frame-splicing options

## Set up features.
feats="ark,s,cs:add-deltas $delta_opts scp:$sdata/JOB/feats.scp ark:- | apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 ark:- ark:- | select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- |"

nnet_feats="ark,s,cs:apply-cmvn-sliding --center=true scp:$sdata_dnn/JOB/feats.scp ark:- |"

if [ $stage -le 0 ]; then
echo "$0: extracting iVectors"
$cmd JOB=1:$nj $dir/log/extract_ivectors.JOB.log \
nnet-am-compute --apply-log=true $nnet "$nnet_feats" ark:- \
\| select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- \
\| logprob-to-post --min-post=$min_post ark:- ark:- \| \
scale-post ark:- $posterior_scale ark:- \| \
ivector-extract --verbose=2 $srcdir/final.ie "$feats" ark,s,cs:- \
ark,scp,t:$dir/ivector.JOB.ark,$dir/ivector.JOB.scp || exit 1;
fi

if [ $stage -le 1 ]; then
echo "$0: combining iVectors across jobs"
for j in $(seq $nj); do cat $dir/ivector.$j.scp; done >$dir/ivector.scp || exit 1;
fi

if [ $stage -le 2 ]; then
# Be careful here: the speaker-level iVectors are now length-normalized,
# even if they are otherwise the same as the utterance-level ones.
echo "$0: computing mean of iVectors for each speaker and length-normalizing"
$cmd $dir/log/speaker_mean.log \
ivector-normalize-length scp:$dir/ivector.scp ark:- \| \
ivector-mean ark:$data/spk2utt ark:- ark:- ark,t:$dir/num_utts.ark \| \
ivector-normalize-length ark:- ark,scp:$dir/spk_ivector.ark,$dir/spk_ivector.scp || exit 1;
fi
79 changes: 79 additions & 0 deletions egs/sre08/v1/sid/init_full_ubm_from_dnn.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
#!/bin/bash
# Copyright 2015 David Snyder
# 2015 Johns Hopkins University (Author: Daniel Garcia-Romero)
# 2015 Johns Hopkins University (Author: Daniel Povey)
# Apache 2.0

# This script derives a full-covariance UBM from DNN posteriors and
# speaker recognition features.

# Begin configuration section.
nj=40
cmd="run.pl"
stage=-2
delta_window=3
delta_order=2
num_components=5297
# End configuration section.

echo "$0 $@" # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;

if [ $# != 3 ]; then
echo "Usage: steps/init_full_ubm_from_dnn.sh <data-speaker-id> <data-dnn> <dnn-model> <new-ubm-dir>"
echo "Initializes a full-covariance UBM from DNN posteriors and speaker recognition features."
echo " e.g.: steps/init_full_ubm_from_dnn.sh data/train data/train_dnn exp/dnn/final.mdl exp/full_ubm"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --nj <n|16> # number of parallel training jobs"
echo " --delta-window <n|3> # delta window size"
echo " --delta-order <n|2> # delta order"
echo " --number-components <n|5297> # number of components in the final GMM needs"
echo " # to be equal to the size of the DNN output layer."
exit 1;
fi

data=$1
data_dnn=$2
nnet=$3
dir=$4

for f in $data/feats.scp $data/vad.scp; do
[ ! -f $f ] && echo "No such file $f" && exit 1;
done

mkdir -p $dir/log
echo $nj > $dir/num_jobs
sdata=$data/split$nj;
utils/split_data.sh $data $nj || exit 1;

sdata_dnn=$data_dnn/split$nj;
utils/split_data.sh $data_dnn $nj || exit 1;

delta_opts="--delta-window=$delta_window --delta-order=$delta_order"
echo $delta_opts > $dir/delta_opts

logdir=$dir/log

nnet_feats="ark,s,cs:apply-cmvn-sliding --center=true scp:$sdata_dnn/JOB/feats.scp ark:- |"

feats="ark,s,cs:add-deltas $delta_opts scp:$sdata/JOB/feats.scp ark:- | \
apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 ark:- ark:- | \
select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- |"

$cmd JOB=1:$nj $logdir/make_stats.JOB.log \
nnet-am-compute --apply-log=true $nnet "$nnet_feats" ark:- \
\| select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- \
\| logprob-to-post ark:- ark:- \| \
fgmm-global-acc-stats-post ark:- $num_components "$feats" \
$dir/stats.JOB.acc || exit 1;

$cmd $dir/log/init.log \
fgmm-global-init-from-accs --verbose=2 \
"fgmm-global-sum-accs - $dir/stats.*.acc |" $num_components \
$dir/final.ubm || exit 1;

exit 0;
181 changes: 181 additions & 0 deletions egs/sre08/v1/sid/train_ivector_extractor_dnn.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
#!/bin/bash

# Copyright 2013 Daniel Povey
# 2014-2015 David Snyder
# 2015 Johns Hopkins University (Author: Daniel Garcia-Romero)
# 2015 Johns Hopkins University (Author: Daniel Povey)
# Apache 2.0.

# This script trains the i-vector extractor using a DNN-based UBM. It also requires
# an fGMM, usually created by the script sid/init_full_gmm_from_dnn.sh.
# Note: there are 3 separate levels of parallelization: num_threads, num_processes,
# and num_jobs. This may seem a bit excessive. It has to do with minimizing
# memory usage and disk I/O, subject to various constraints. The "num_threads"
# is how many threads a program uses; the "num_processes" is the number of separate
# processes a single job spawns, and then sums the accumulators in memory.
# Our recommendation:
# - Set num_threads to the minimum of (4, or how many virtual cores your machine has).
# (because of needing to lock various global quantities, the program can't
# use many more than 4 threads with good CPU utilization).
# - Set num_processes to the number of virtual cores on each machine you have, divided by
# num_threads. E.g. 4, if you have 16 virtual cores. If you're on a shared queue
# that's busy with other people's jobs, it may be wise to set it to rather less
# than this maximum though, or your jobs won't get scheduled. And if memory is
# tight you need to be careful; in our normal setup, each process uses about 5G.
# - Set num_jobs to as many of the jobs (each using $num_threads * $num_processes CPUs)
# your queue will let you run at one time, but don't go much more than 10 or 20, or
# summing the accumulators will possibly get slow. If you have a lot of data, you
# may want more jobs, though.

# Begin configuration section.
nj=10 # this is the number of separate queue jobs we run, but each one
# contains num_processes sub-jobs.. the real number of threads we
# run is nj * num_processes * num_threads, and the number of
# separate pieces of data is nj * num_processes.
num_threads=4
num_processes=4 # each job runs this many processes, each with --num-threads threads
cmd="run.pl"
stage=-4
num_gselect=20 # Gaussian-selection using diagonal model: number of Gaussians to select
ivector_dim=400 # dimension of the extracted i-vector
use_weights=false # set to true to turn on the regression of log-weights on the ivector.
num_iters=10
min_post=0.025 # Minimum posterior to use (posteriors below this are pruned out)
num_samples_for_weights=3 # smaller than the default for speed (relates to a sampling method)
cleanup=true
posterior_scale=1.0 # This scale helps to control for successve features being highly
# correlated. E.g. try 0.1 or 0.3
sum_accs_opt=
# End configuration section.

echo "$0 $@" # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;


if [ $# != 5 ]; then
echo "Usage: $0 <fgmm-model> <dnn-model> <data-speaker-id> <data-dnn> <extractor-dir>"
echo " e.g.: $0 exp/sup_ubm/final.ubm exp/dnn/final.mdl data/train data/train_dnn exp/extractor_male"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --num-iters <#iters|10> # Number of iterations of E-M"
echo " --nj <n|10> # Number of jobs (also see num-processes and num-threads)"
echo " --num-processes <n|4> # Number of processes for each queue job (relates"
echo " # to summing accs in memory)"
echo " --num-threads <n|4> # Number of threads for each process (can't be usefully"
echo " # increased much above 4)"
echo " --stage <stage|-4> # To control partial reruns"
echo " --num-gselect <n|20> # Number of Gaussians to select using"
echo " # diagonal model."
echo " --sum-accs-opt <option|''> # Option e.g. '-l hostname=a15' to localize"
echo " # sum-accs process to nfs server."
exit 1;
fi

fgmm_model=$1
nnet=$2
data=$3
data_dnn=$4
dir=$5

srcdir=$(dirname $fgmm_model)

for f in $fgmm_model $data/feats.scp ; do
[ ! -f $f ] && echo "No such file $f" && exit 1;
done

# Set various variables.
mkdir -p $dir/log
nj_full=$[$nj*$num_processes]
sdata=$data/split$nj_full;
utils/split_data.sh $data $nj_full || exit 1;

sdata_dnn=$data_dnn/split$nj_full;
utils/split_data.sh $data_dnn $nj_full || exit 1;

delta_opts=`cat $srcdir/delta_opts 2>/dev/null`
if [ -f $srcdir/delta_opts ]; then
cp $srcdir/delta_opts $dir/ 2>/dev/null
fi

splice_opts=`cat exp/nnet//splice_opts 2>/dev/null` # frame-splicing options

parallel_opts="-pe smp $[$num_threads*$num_processes]"
## Set up features.
feats="ark,s,cs:add-deltas $delta_opts scp:$sdata/JOB/feats.scp ark:- | apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 ark:- ark:- | select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- |"

nnet_feats="ark,s,cs:apply-cmvn-sliding --center=true scp:$sdata_dnn/JOB/feats.scp ark:- |"


# Initialize the i-vector extractor using the FGMM input
if [ $stage -le -2 ]; then
cp $fgmm_model $dir/final.ubm || exit 1;
$cmd $dir/log/convert.log \
fgmm-global-to-gmm $dir/final.ubm $dir/final.dubm || exit 1;
$cmd $dir/log/init.log \
ivector-extractor-init --ivector-dim=$ivector_dim --use-weights=$use_weights \
$dir/final.ubm $dir/0.ie || exit 1;
fi

# Do Gaussian selection and posterior extracion

if [ $stage -le -1 ]; then
echo $nj_full > $dir/num_jobs
echo "$0: doing DNN posterior computation"
$cmd JOB=1:$nj_full $dir/log/post.JOB.log \
nnet-am-compute --apply-log=true $nnet "$nnet_feats" ark:- \
\| select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- \
\| logprob-to-post --min-post=$min_post ark,s,cs:- ark:- \| \
scale-post ark:- $posterior_scale "ark:|gzip -c >$dir/post.JOB.gz" || exit 1;

else
if ! [ $nj_full -eq $(cat $dir/num_jobs) ]; then
echo "Num-jobs mismatch $nj_full versus $(cat $dir/num_jobs)"
exit 1
fi
fi

x=0
while [ $x -lt $num_iters ]; do
if [ $stage -le $x ]; then
rm $dir/.error 2>/dev/null

Args=() # bash array of training commands for 1:nj, that put accs to stdout.
for j in $(seq $nj_full); do
Args[$j]=`echo "ivector-extractor-acc-stats --num-threads=$num_threads --num-samples-for-weights=$num_samples_for_weights $dir/$x.ie '$feats' 'ark,s,cs:gunzip -c $dir/post.JOB.gz|' -|" | sed s/JOB/$j/g`
done

echo "Accumulating stats (pass $x)"
for g in $(seq $nj); do
start=$[$num_processes*($g-1)+1]
$cmd $parallel_opts $dir/log/acc.$x.$g.log \
ivector-extractor-sum-accs --parallel=true "${Args[@]:$start:$num_processes}" \
$dir/acc.$x.$g || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "Error accumulating stats on iteration $x" && exit 1;
accs=""
for j in $(seq $nj); do
accs+="$dir/acc.$x.$j "
done
echo "Summing accs (pass $x)"
$cmd $sum_accs_opt $dir/log/sum_acc.$x.log \
ivector-extractor-sum-accs $accs $dir/acc.$x || exit 1;
echo "Updating model (pass $x)"
nt=$[$num_threads*$num_processes] # use the same number of threads that
# each accumulation process uses, since we
# can be sure the queue will support this many.
$cmd -pe smp $nt $dir/log/update.$x.log \
ivector-extractor-est --num-threads=$nt $dir/$x.ie $dir/acc.$x $dir/$[$x+1].ie || exit 1;
rm $dir/acc.$x.*
if $cleanup; then
rm $dir/acc.$x
# rm $dir/$x.ie
fi
fi
x=$[$x+1]
done

ln -s $x.ie $dir/final.ie
5 changes: 5 additions & 0 deletions egs/sre10/v1/local/dnn/README
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
This directory contains DNN scripts based on the nnet2 recipes found in
the ASR examples (e.g., fisher_english). The scripts have been modified
for speaker recognition purposes. Most of the scripts are lightly modified
versions of those appearing in the steps or local directories of
egs/fisher_english.
Loading

0 comments on commit 55d8f86

Please sign in to comment.