Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add rational fits #223

Open
wants to merge 38 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
38 commits
Select commit Hold shift + click to select a range
07cd500
add rational fits
md-arif-shaikh Sep 25, 2024
107fbf2
add documentation and restructure rational_fit
md-arif-shaikh Sep 26, 2024
7b527fd
add omega_gw_extrema_interpolation_method
md-arif-shaikh Sep 26, 2024
59eb2be
use approximate orbits to guess degree for rational fit
md-arif-shaikh Sep 26, 2024
37ec2b3
use optimal degree function only user provided degree is None
md-arif-shaikh Sep 26, 2024
546b406
improve debug message
md-arif-shaikh Sep 26, 2024
89fc181
more polishing
md-arif-shaikh Sep 27, 2024
b17483c
improve omega interpolant documentation
md-arif-shaikh Sep 27, 2024
92ddab0
minor
md-arif-shaikh Sep 27, 2024
30f7376
copy documentation to gw_eccentricity
md-arif-shaikh Sep 28, 2024
bf5619c
minor
md-arif-shaikh Sep 29, 2024
f01f538
Merge branch 'main' into rational_fit
md-arif-shaikh Oct 14, 2024
326b10a
raise exception if degree=1 is attempted to be lowered
md-arif-shaikh Oct 14, 2024
0805bb0
Merge branch 'main' into rational_fit
md-arif-shaikh Oct 14, 2024
42a6755
fix nonmonotic egw by increasing rational fit degree
md-arif-shaikh Oct 17, 2024
4a5e4c9
add informative message
md-arif-shaikh Oct 17, 2024
95e60e1
turn on debug
md-arif-shaikh Oct 18, 2024
b4b1ab3
refactor egw checking and fixing with rational fits
md-arif-shaikh Oct 18, 2024
5a05690
fix typos
md-arif-shaikh Oct 18, 2024
83b7d08
add variable to store final fit degrees
md-arif-shaikh Oct 25, 2024
0fca25f
remove fallback option
md-arif-shaikh Oct 25, 2024
065776e
improve documentation, change to rational_fit
md-arif-shaikh Oct 26, 2024
671c54a
make tests pass
md-arif-shaikh Oct 26, 2024
ae873cf
change egw monotonicity check to previous version
md-arif-shaikh Oct 26, 2024
336227d
add docs under get_rational_fit
md-arif-shaikh Oct 26, 2024
c3b4eb8
update regression data and test based on interp method
md-arif-shaikh Oct 27, 2024
9c376db
fix regression test
md-arif-shaikh Oct 27, 2024
03c75ae
ignore deprecationwarning from polyrat
md-arif-shaikh Oct 27, 2024
c2c361f
test units for spline for now
md-arif-shaikh Oct 27, 2024
07336b0
address comments
md-arif-shaikh Nov 5, 2024
6f2d3ae
update -> store
md-arif-shaikh Nov 5, 2024
9048299
Merge branch 'main' into rational_fit
md-arif-shaikh Nov 8, 2024
0e89ed4
separate interpolation for extrema and non extrema data
md-arif-shaikh Nov 13, 2024
d41645e
copy over to gw_eccentricity
md-arif-shaikh Nov 13, 2024
ef8aaa3
add checks for only one key in extrema_interp_kwargs
md-arif-shaikh Nov 14, 2024
d158f31
do only extra_kwargs not None
md-arif-shaikh Nov 14, 2024
b637871
Merge branch 'main' into rational_fit
md-arif-shaikh Nov 26, 2024
c916d70
rename interp kwargs
md-arif-shaikh Nov 27, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
523 changes: 455 additions & 68 deletions gw_eccentricity/eccDefinition.py

Large diffs are not rendered by default.

49 changes: 45 additions & 4 deletions gw_eccentricity/gw_eccentricity.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,12 +338,30 @@ def measure_eccentricity(tref_in=None,
Default value is "inertial".

extra_kwargs: A dict of any extra kwargs to be passed. Allowed kwargs are:
spline_kwargs:
special_interp_kwargs_for_extrema: dict
A dictionary with a single key matching the current
`omega_gw_extrema_interpolation_method`. See under
`omega_gw_extrema_interpolation_method` for more details on
possible values of interpolation methods.

Example structure:
{
"method": {"param1": value1, "param2": value2},
}

currently, the available options for "method" are:

- "spline": default kwargs are set using
`utils.get_default_spline_kwargs`
- "rational_fit": default kwargs are set using
`utils.get_default_rational_fit_kwargs`

general_interp_kwargs: dict
Dictionary of arguments to be passed to the spline interpolation
routine (scipy.interpolate.InterpolatedUnivariateSpline) used to
compute quantities like omega_gw_pericenters(t) and
omega_gw_apocenters(t).
Defaults are set using utils.get_default_spline_kwargs
interpolate data other than the omega_gw extrema.

Defaults are set using `utils.get_default_spline_kwargs`

extrema_finding_kwargs:
Dictionary of arguments to be passed to the extrema finder,
Expand Down Expand Up @@ -443,6 +461,29 @@ def measure_eccentricity(tref_in=None,
mean anomaly to zero.
USE THIS WITH CAUTION!

omega_gw_extrema_interpolation_method : str, default="rational_fit"
Specifies the method used to build the interpolations for
`omega_gw_pericenters_interp(t)` or `omega_gw_apocenters_interp(t)`.
The available options are:

- `spline`: Uses `scipy.interpolate.InterpolatedUnivariateSpline`.
- Best suited for cleaner data, such as when waveform modes are generated
using models like SEOB or TEOB.
- Faster to construct and evaluate.
- Since it fits through every data point, it may exhibit oscillatory
behavior, particularly near the merger.

- `rational_fit`: Uses `polyrat.StabilizedSKRationalApproximation`.
- Can handle both clean and noisy data, e.g., waveform modes
from numerical simulations.
- Better monotonic behaviour, particularly near the merger.
- Significantly slower compared to the `spline` method. This is because
finding optimal numerator and denominator degree needs several iterations
- Can suppress pathologies in the waveform that might be visible with
`spline`.

Default value: `"rational_fit"`.

Returns
-------
A dictionary containing the following keys
Expand Down
37 changes: 37 additions & 0 deletions gw_eccentricity/utils.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""Useful functions for the project."""
import numpy as np
import argparse
from polyrat import StabilizedSKRationalApproximation
from scipy.interpolate import InterpolatedUnivariateSpline
from scipy.interpolate import PchipInterpolator
import warnings
Expand Down Expand Up @@ -317,6 +318,42 @@ def get_interpolant(oldX,
return interpolant


def get_default_rational_fit_kwargs():
"""Get default kwargs for rational fit."""
default_rational_fit_kwargs = {
"num_degree": None,
"denom_degree": None,
"norm": 2,
"maxiter": 20,
"verbose": False,
"xtol": 1e-07,
}
return default_rational_fit_kwargs


def get_rational_fit(x, y, rational_fit_kwargs=None, check_kwargs=True):
"""Get rational fit for the data set (x, y).

We use `polyrat.StabilizedSKRationalApproximation` to obtain
rational fit to the data.
"""
if check_kwargs:
rational_fit_kwargs = check_kwargs_and_set_defaults(
rational_fit_kwargs,
get_default_rational_fit_kwargs(),
"rational_fit_kwargs",
"utils.get_default_rational_fit_kwargs"
)
# We use a rational approximation based on Stabilized Sanathanan-Koerner Iteration
# described in arXiv:2009.10803 and implemented in `polyrat.StabilizedSKRationalApproximation`.
rat = StabilizedSKRationalApproximation(**rational_fit_kwargs)
# The input x-axis data must be 2-dimensional
rat.fit(x.reshape(-1, 1), y)
# Using a lambda function to change the input 1-d data to
# float64 and reshape to 2-d as required by the fit.
return lambda t: rat(t.astype('float64').reshape(-1, 1))


def debug_message(message, debug_level, important=True,
point_to_verbose_output=False):
"""Show message based on debug_level.
Expand Down
3 changes: 3 additions & 0 deletions pytest.ini
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
[pytest]
filterwarnings =
ignore::DeprecationWarning:polyrat.*
3 changes: 2 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,8 @@ def get_version():
'h5py',
'lalsuite',
'sxs',
'scri'
'scri',
'polyrat'
],
classifiers=[
"Intended Audience :: Science/Research",
Expand Down
25 changes: 15 additions & 10 deletions test/generate_regression_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,15 @@
type=str,
required=True,
help="EccDefinition method to save the regression data for.")
parser.add_argument(
"--interp_method",
type=str,
required=True,
help="omega_gw_extrema_interpolation_method to save the regression data for.")
args = parser.parse_args()


def generate_regression_data(method):
def generate_regression_data(method, interp_method):
"""Generate data for regression test using a method."""
# Load test waveform
lal_kwargs = {"approximant": "EccentricTD",
Expand All @@ -42,7 +47,7 @@ def generate_regression_data(method):
raise Exception(f"method {method} is not available. Must be one of "
f"{available_methods}")

extra_kwargs = {}
extra_kwargs = {"omega_gw_extrema_interpolation_method": interp_method}
user_kwargs = extra_kwargs.copy()
regression_data.update({"extra_kwargs": extra_kwargs})
# Try evaluating at an array of times
Expand All @@ -56,9 +61,9 @@ def generate_regression_data(method):
meanano_ref = gwecc_dict["mean_anomaly"]
# We save the measured data 3 reference times
n = len(tref_out)
dict_tref = {"time": [tref_out[0], tref_out[n//4], tref_out[n//2]],
"eccentricity": [ecc_ref[0], ecc_ref[n//4], ecc_ref[n//2]],
"mean_anomaly": [meanano_ref[0], meanano_ref[n//4], meanano_ref[n//2]]}
dict_tref = {"time": [tref_out[n//8], tref_out[n//4], tref_out[n//2]],
"eccentricity": [ecc_ref[n//8], ecc_ref[n//4], ecc_ref[n//2]],
"mean_anomaly": [meanano_ref[n//8], meanano_ref[n//4], meanano_ref[n//2]]}

# Try evaluating at an array of frequencies
gwecc_dict = measure_eccentricity(
Expand All @@ -70,18 +75,18 @@ def generate_regression_data(method):
ecc_ref = gwecc_dict["eccentricity"]
meanano_ref = gwecc_dict["mean_anomaly"]
n = len(fref_out)
dict_fref = {"frequency": [fref_out[0], fref_out[n//4], fref_out[n//2]],
"eccentricity": [ecc_ref[0], ecc_ref[n//4], ecc_ref[n//2]],
"mean_anomaly": [meanano_ref[0], meanano_ref[n//4], meanano_ref[n//2]]}
dict_fref = {"frequency": [fref_out[n//8], fref_out[n//4], fref_out[n//2]],
"eccentricity": [ecc_ref[n//8], ecc_ref[n//4], ecc_ref[n//2]],
"mean_anomaly": [meanano_ref[n//8], meanano_ref[n//4], meanano_ref[n//2]]}
regression_data.update({"tref": dict_tref,
"fref": dict_fref})

if not os.path.exists(data_dir):
os.mkdir(data_dir)
# save to a json file
fl = open(f"{data_dir}/{method}_regression_data.json", "w")
fl = open(f"{data_dir}/{method}_{interp_method}_regression_data.json", "w")
json.dump(regression_data, fl)
fl.close()

# generate regression data
generate_regression_data(args.method)
generate_regression_data(args.method, args.interp_method)
1 change: 0 additions & 1 deletion test/regression_data/AmplitudeFits_regression_data.json

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"waveform_kwargs": {"approximant": "EccentricTD", "q": 1.0, "chi1": [0.0, 0.0, 0.0], "chi2": [0.0, 0.0, 0.0], "Momega0": 0.01, "ecc": 0.1, "mean_ano": 0, "include_zero_ecc": true}, "extra_kwargs": {"omega_gw_extrema_interpolation_method": "spline"}, "tref": {"time": [-12981.119163243457, -11192.719163243455, -7616.019163243456], "eccentricity": [0.14125503147618124, 0.1347862810667858, 0.11943002063131647], "mean_anomaly": [3.271739184693624, 0.9679656489638688, 5.4841245849525535]}, "fref": {"frequency": [0.00413802852038928, 0.004297183463481175, 0.0047746482927568615], "eccentricity": [0.11926882656303317, 0.11542822840106648, 0.10530937888140646], "mean_anomaly": [5.832592108883006, 1.494348360501732, 2.830869757710083]}}
1 change: 0 additions & 1 deletion test/regression_data/Amplitude_regression_data.json

This file was deleted.

1 change: 1 addition & 0 deletions test/regression_data/Amplitude_spline_regression_data.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"waveform_kwargs": {"approximant": "EccentricTD", "q": 1.0, "chi1": [0.0, 0.0, 0.0], "chi2": [0.0, 0.0, 0.0], "Momega0": 0.01, "ecc": 0.1, "mean_ano": 0, "include_zero_ecc": true}, "extra_kwargs": {"omega_gw_extrema_interpolation_method": "spline"}, "tref": {"time": [-12997.219163243457, -11225.819163243457, -7683.019163243456], "eccentricity": [0.1412963090542808, 0.13489390800343737, 0.11972197672456475], "mean_anomaly": [3.118093974362708, 0.642446628947404, 4.757738663295697]}, "fref": {"frequency": [0.00413802852038928, 0.004297183463481175, 0.0047746482927568615], "eccentricity": [0.11923643778091675, 0.11538856688636778, 0.10524430745877145], "mean_anomaly": [5.8083670411936055, 1.4699121058751956, 2.7932679992189193]}}
1 change: 0 additions & 1 deletion test/regression_data/FrequencyFits_regression_data.json

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"waveform_kwargs": {"approximant": "EccentricTD", "q": 1.0, "chi1": [0.0, 0.0, 0.0], "chi2": [0.0, 0.0, 0.0], "Momega0": 0.01, "ecc": 0.1, "mean_ano": 0, "include_zero_ecc": true}, "extra_kwargs": {"omega_gw_extrema_interpolation_method": "spline"}, "tref": {"time": [-12981.319163243457, -11193.019163243456, -7616.419163243456], "eccentricity": [0.1412559990968395, 0.13478783801299066, 0.11943256094180654], "mean_anomaly": [3.271739184693624, 0.9671579875661678, 5.4821375349876575]}, "fref": {"frequency": [0.00413802852038928, 0.004297183463481175, 0.0047746482927568615], "eccentricity": [0.11926984282942188, 0.1154273089414749, 0.10530750015791723], "mean_anomaly": [5.833828675147657, 1.5003684452927075, 2.839055270348034]}}
1 change: 0 additions & 1 deletion test/regression_data/Frequency_regression_data.json

This file was deleted.

1 change: 1 addition & 0 deletions test/regression_data/Frequency_spline_regression_data.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"waveform_kwargs": {"approximant": "EccentricTD", "q": 1.0, "chi1": [0.0, 0.0, 0.0], "chi2": [0.0, 0.0, 0.0], "Momega0": 0.01, "ecc": 0.1, "mean_ano": 0, "include_zero_ecc": true}, "extra_kwargs": {"omega_gw_extrema_interpolation_method": "spline"}, "tref": {"time": [-12997.819163243457, -11226.819163243457, -7684.919163243456], "eccentricity": [0.14129511303046816, 0.13489405452014136, 0.11972728556745593], "mean_anomaly": [3.114478792943153, 0.634809819093654, 4.7407656825570825]}, "fref": {"frequency": [0.00413802852038928, 0.004297183463481175, 0.0047746482927568615], "eccentricity": [0.11923247746634258, 0.11538428023179614, 0.10524044651877096], "mean_anomaly": [5.811428452219403, 1.473195504466105, 2.798061691253885]}}

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"waveform_kwargs": {"approximant": "EccentricTD", "q": 1.0, "chi1": [0.0, 0.0, 0.0], "chi2": [0.0, 0.0, 0.0], "Momega0": 0.01, "ecc": 0.1, "mean_ano": 0, "include_zero_ecc": true}, "extra_kwargs": {"omega_gw_extrema_interpolation_method": "spline"}, "tref": {"time": [-12981.319163243457, -11193.019163243456, -7616.519163243456], "eccentricity": [0.14125596891213044, 0.13478776432643125, 0.11943299066201574], "mean_anomaly": [3.2708353893387336, 0.9662032412803043, 5.4800155541341695]}, "fref": {"frequency": [0.00413802852038928, 0.004297183463481175, 0.0047746482927568615], "eccentricity": [0.11926975624561775, 0.1154272021945365, 0.10530996061768227], "mean_anomaly": [5.832818126814786, 1.4992647336341633, 2.8323037712231454]}}

This file was deleted.

Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"waveform_kwargs": {"approximant": "EccentricTD", "q": 1.0, "chi1": [0.0, 0.0, 0.0], "chi2": [0.0, 0.0, 0.0], "Momega0": 0.01, "ecc": 0.1, "mean_ano": 0, "include_zero_ecc": true}, "extra_kwargs": {"omega_gw_extrema_interpolation_method": "spline"}, "tref": {"time": [-12981.319163243457, -11193.019163243456, -7616.519163243456], "eccentricity": [0.14125598209018864, 0.1347878224760185, 0.1194330394418408], "mean_anomaly": [3.271739184693624, 0.967011047732143, 5.481076544560906]}, "fref": {"frequency": [0.00413802852038928, 0.004297183463481175, 0.0047746482927568615], "eccentricity": [0.11926981413331783, 0.11542727032728273, 0.10531052353279924], "mean_anomaly": [5.833866315156342, 1.5003849616201421, 2.8327681616289127]}}
Loading