Skip to content

Commit

Permalink
Added evaluation (end to end and with gold cues) for CD files and con…
Browse files Browse the repository at this point in the history
…ll-x files
  • Loading branch information
marenger committed Apr 2, 2017
1 parent 11a54a8 commit 91b2a4a
Show file tree
Hide file tree
Showing 3 changed files with 278 additions and 3 deletions.
191 changes: 191 additions & 0 deletions evaluation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@

import itertools
import argparse
import pickle
import numpy as np
from sklearn.externals import joblib

from utils import get_affix_cue, count_multiword_cues, mwc_start, convert_to_IO, make_complete_labelarray, make_splits
from negtool import load_cue_learner, load_scope_learner
from file_reading import read_parsed_data, read_cuepredicted_data
from read_CD_file import read_CD_file
from feature_extraction import extract_features_scope, extract_features_cue

def convert_cues_to_fileformat(sentences, labels, affix_cue_lexicon, filename, fileformat):
infile = open(filename, "r")
filename_base = filename.split("/")[-1].split(".")[0]
output_filename = "%s_evaluation_cues.txt" %filename_base
outfile = open(output_filename, "w")
sent_counter = 0
line_counter = 0
upper_limit = 7
n_cues = sum(i > 0 for i in labels[sent_counter])
n_mwc, has_mwc = count_multiword_cues(sentences[sent_counter], labels[sent_counter])
if has_mwc:
n_cues += n_mwc - 1
written_cues = n_cues*[False]
for line in infile:
tokens = line.split()
if len(tokens) == 0:
sent_counter += 1
line_counter = 0
if sent_counter < len(labels):
n_cues = sum(i > 0 for i in labels[sent_counter])
n_mwc, has_mwc = count_multiword_cues(sentences[sent_counter], labels[sent_counter])
if has_mwc:
n_cues += n_mwc - 1
written_cues = n_cues*[False]
outfile.write("\n")
else:
if not fileformat == "CD":
#delete unneccesary columns to match CD
del tokens[3]
del tokens[5]
del tokens[6]
tokens[0] -= str(int(tokes[0]) - 1) #start counting from 0
tokens = ['_', '_'] + tokens #add to columns to the start to match CD
written_cue_on_line = False
for i in range(upper_limit):
outfile.write("%s\t" %tokens[i])
if n_cues == 0:
outfile.write("***\n")
else:
for cue_i in range(n_cues):
if labels[sent_counter][line_counter] < 0:
outfile.write("_\t_\t_\t")
else:
if written_cues[cue_i] or written_cue_on_line:
outfile.write("_\t_\t_\t")
else:
affix = get_affix_cue(tokens[3].lower(), affix_cue_lexicon)
if affix != None:
outfile.write("%s\t_\t_\t" %affix)
written_cues[cue_i] = True
else:
outfile.write("%s\t_\t_\t" %tokens[3])
prev_token = sentences[sent_counter][line_counter-1][3].lower() if line_counter > 0 else 'null'
if not mwc_start(tokens[3].lower(), prev_token):
written_cues[cue_i] = True
written_cue_on_line = True
line_counter += 1
outfile.write("\n")
infile.close()
outfile.close()

def convert_scopes_to_fileformat(filename, sentences, labels, fileformat):
base_name = filename.split("/")[-1].split(".")[0]
infile = open(filename, "r")
outfile = open("%s_evaluation_scopes.txt" %base_name, "w")
sent_counter = 0
line_counter = 0
scope_counter = 0
upper_limit = 7
n_cues = 0
for line in infile:
tokens = line.split()
if len(tokens) == 0:
sent_counter += 1
scope_counter += n_cues
line_counter = 0
n_cues = 0
outfile.write("\n")
elif tokens[-1] == "***":
outfile.write(line)
else:
sent = sentences[sent_counter]
cues = sent['cues']
n_cues = len(cues)
for i in range(upper_limit):
outfile.write("%s\t" %tokens[i])
for cue_i in range(n_cues):
outfile.write("%s\t" %tokens[upper_limit + 3*cue_i])
if labels[scope_counter][line_counter] == 0 or labels[scope_counter][line_counter] == 2:
if cues[cue_i][2] == 'a' and sent[int(cues[cue_i][1])][3] == tokens[3]:
outfile.write("%s\t" %(tokens[3].replace(cues[cue_i][0], "")))
elif tokens[upper_limit + 3*cue_i] != "_":
outfile.write("_\t")
else:
outfile.write("%s\t" %tokens[3])
else:
outfile.write("_\t")

outfile.write("%s\t" %tokens[upper_limit + 2 + 3*cue_i])
scope_counter += 1

scope_counter -= n_cues
line_counter += 1
outfile.write("\n")

infile.close()
outfile.close()

def load_cue_learner(cue_model, cue_vectorizer, cue_lexicon, affixal_cue_lexicon):
cue_ssvm = pickle.load(open(cue_model, "rb"))
cue_vect = joblib.load(cue_vectorizer)
cue_lex = pickle.load(open(cue_lexicon, "rb"))
affixal_cue_lex = pickle.load(open(affixal_cue_lexicon, "rb"))
return cue_ssvm, cue_vect, cue_lex, affixal_cue_lex

def load_scope_learner(scope_model, scope_vectorizer):
scope_ssvm = pickle.load(open(scope_model, "rb"))
scope_vect = joblib.load(scope_vectorizer)
return scope_ssvm, scope_vect

def test_cue_model(cue_ssvm, cue_vectorizer, cue_lexicon, affixal_cue_lexicon, filename, mode, fileformat, parsed_cd_file=None):
"""
Reads the file with the input data, extracts features for cue detection,
does cue prediction and converts the predicted cues to the CD file format
"""
if fileformat == "CD":
dev_sentence_dicts = read_CD_file(filename, parsed_cd_file)
else:
dev_sentence_dicts = read_parsed_data(filename, 'parsed')
dev_sd, dev_instances = extract_features_cue(dev_sentence_dicts, cue_lexicon, affixal_cue_lexicon, 'prediction')
dev_fvs = cue_vectorizer.transform(dev_instances).toarray()
y_pred = cue_ssvm.predict(dev_fvs)
dev_y_pred = make_complete_labelarray(dev_sentence_dicts, y_pred)
convert_cues_to_fileformat(dev_sentence_dicts, dev_y_pred, affixal_cue_lexicon, filename, fileformat)

def test_scope_model(scope_ssvm, scope_vectorizer, filename, fileformat, parsed_cd_file=None):
"""
Reads the file with the predicted cues, extracts features for scope resolution,
does scope prediction and converts the predicted scopes for the predicted cues
to the CD file format
"""
if fileformat == "CD":
sentence_dicts = read_CD_file(filename, parsed_cd_file)
else:
sentence_dicts = read_cuepredicted_data(filename, 'parsed')
sentences, dev_instances, dev_splits = extract_features_scope(sentence_dicts, 'prediction')
dev_fvs = scope_vectorizer.transform(dev_instances).toarray()
X_dev, y_dev = make_splits(dev_fvs, [], dev_splits)
y_pred = scope_ssvm.predict(X_dev)
convert_scopes_to_fileformat(filename, sentences, y_pred, fileformat)


if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('-cm', '--cuemodel', help="path to cue model object file",type=str)
argparser.add_argument('-sm', '--scopemodel', help="path to scope model object file", type=str)
argparser.add_argument('-cl', '--cuelex', help="path to cue lexicon object file", type=str)
argparser.add_argument('-acl', '--affixalcuelex', help="path to affixal cue lexicon object file", type=str)
argparser.add_argument('-cv', '--cuevect', help="path to cue vectorizer object file", type=str)
argparser.add_argument('-sv', '--scopevect', help="path to scope vectorizer object file", type=str)
argparser.add_argument('-tf', '--testfile', help="path to test file", type=str)
argparser.add_argument('-cdf', '--cdfile', help="path to parsed CD file. Needs to be provided when evaluating CD files", nargs='?', type=str)
argparser.add_argument('-ff', '--fileformat', help="fileformat of testfile. either CD or parsed", type=str)
argparser.add_argument('-e2e', '--endtoend', help="end to end evaluation. If true, cues will be predicted and the scopes will be predicted for the predicted cues. If false, scopes will be predicted for gold cues.", type=bool)
args = argparser.parse_args()

filename_base = args.testfile.split("/")[-1].split(".")[0]

cue_model, cue_vectorizer, cue_lexicon, affixal_cue_lexicon = load_cue_learner(args.cuemodel, args.cuevect, args.cuelex, args.affixalcuelex)
scope_model, scope_vectorizer = load_scope_learner(args.scopemodel, args.scopevect)
if args.endtoend == 'true':
test_cue_model(cue_model, cue_vectorizer, cue_lexicon, affixal_cue_lexicon, args.testfile, 'parsed', args.fileformat, args.cdfile)
test_scope_model(scope_model, scope_vectorizer, "%s_evaluation_cues.txt" %filename_base, args.fileformat, args.cdfile)
else:
test_scope_model(scope_model, scope_vectorizer, args.testfile, args.fileformat, args.cdfile)



86 changes: 86 additions & 0 deletions read_CD_file.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
import numpy as np

def read_CD_file(filename, conll_filename):
with open(filename, 'r') as infile1, open(conll_filename) as infile2:
sentence = {}
cues = []
mw_cues = []
scopes = {}
events = {}
line_counter = 0
counter = 0
cue_counter = 0
prev_cue_column = -1
instances = []

for line in infile1:
conll_line = infile2.readline()
token_dict = {}
tokens = line.split()
conll_tokens = conll_line.split()
#check for sentence end
if len(tokens) == 0:
for key in sentence:
head_index = int(sentence[key]['head']) - 1
if head_index > -1:
sentence[key]['head-pos'] = sentence[head_index][5]
else:
sentence[key]['head-pos'] = sentence[key][5]

if(len(scopes) != len(cues)):
for i in range(len(cues)):
if not i in scopes:
scopes[i] = []

sentence['cues'] = cues
sentence['mw_cues'] = mw_cues
sentence['scopes'] = scopes
sentence['events'] = events

if len(cues) > 0:
sentence['neg'] = True
else:
sentence['neg'] = False

instances.append(sentence)
sentence = {}
counter = 0
prev_cue_column = -1
cues = []
mw_cues = []
scopes = {}
events = {}
line_counter += 1
continue

for i in range(len(tokens)):
if tokens[i] != "_" and i < 6:
token_dict[i] = tokens[i]
elif tokens[i] != "***" and tokens[i] != "_" and i > 6 and (i-1) % 3 == 0:
if i == prev_cue_column:
cues[-1][2] = 'm'
prev_cue_column = i
if cues[-1][2] == 'm':
mw_cues.append([cues[-1][0],cues[-1][1]])
mw_cues.append([tokens[i], counter])
elif tokens[i] != tokens[3]:
cues.append([tokens[i], counter, 'a'])
prev_cue_column = i
else:
cues.append([tokens[i], counter, 's'])
prev_cue_column = i
elif tokens[i] != "***" and tokens[i] != "_" and i > 6 and (i-2) % 3 == 0:
cue_counter = (i-8)/3
if cue_counter in scopes:
scopes[cue_counter].append([tokens[i], counter])
else:
scopes[cue_counter] = [[tokens[i], counter]]
elif tokens[i] != "***" and tokens[i] != "_" and i > 6 and (i-3) % 3 == 0:
cue_counter = (i-9)/3
events[cue_counter] = tokens[i]
token_dict['head'] = conll_tokens[6]
token_dict['deprel'] = conll_tokens[7]
sentence[counter] = token_dict
counter += 1
line_counter += 1
return instances
4 changes: 1 addition & 3 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from utils import *
from file_writing import *
from read_labelled_data import read_file
from negtool import run_cue_learner, run_scope_learner

def train_cue_learner(sentence_dicts, C_value):
cue_lexicon, affixal_cue_lexicon = get_cue_lexicon(sentence_dicts)
Expand Down Expand Up @@ -50,16 +51,13 @@ def save_scope_learner(scope_ssvm, scope_vectorizer, filename):
argparser.add_argument('-sp', '--scopeparameter', help="regularisation parameter for the scope model", type=float, nargs="?", default=0.20)
args = argparser.parse_args()

print "lese inn setninger"
sentence_dicts = read_file(args.trainingfile)
filename = args.trainingfile.split(".")[0]
if args.model == 'cue' or args.model == 'all':
print "trener cue"
cue_ssvm, cue_vectorizer, cue_lexicon, affixal_cue_lexicon = train_cue_learner(sentence_dicts, args.scopeparameter)
save_cue_learner(cue_ssvm, cue_vectorizer, cue_lexicon, affixal_cue_lexicon, filename)

if args.model == 'scope' or args.model == 'all':
print "trener scope"
scope_ssvm, scope_vectorizer = train_scope_learner(sentence_dicts, 0.20)
save_scope_learner(scope_ssvm, scope_vectorizer, filename)

0 comments on commit 91b2a4a

Please sign in to comment.