forked from amusi/daily-paper-computer-vision
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
29 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
**2018-08-07** | ||
|
||
这篇文章介绍两篇 ECCV 2018最新的 paper,一篇提出新的网格自动编码的卷积神经网络,用于生成3D人脸;另一篇提出新的RFNet,实现看图说话(image caption)。 | ||
|
||
# 3D Face | ||
|
||
**《Generating 3D faces using Convolutional Mesh Autoencoders》** | ||
|
||
**ECCV 2018** | ||
|
||
Abstract:人脸的3D表示(representations)对于计算机视觉问题是有用的,例如3D面部跟踪和从图像重建,以及诸如角色生成和动画的图形应用。传统模型使用线性子空间或高阶张量概括来学习面部的潜在表示(latent representation)。由于这种线性,它们无法捕获极端变形和非线性表达式。为了解决这个问题,我们引入了一个多功能模型(versatile model),该模型使用网格表面上的光谱卷积来学习面部的非线性表示。我们引入了网格采样操作,这种操作能够实现分层网格表示,捕获模型中多个尺度的形状和表达的非线性变化。在variational setting中,我们的模型从多元高斯分布中采样不同的逼真3D人脸。我们的训练数据包括在12个不同subjects中捕获的20,466个极端表情网格。尽管训练数据有限,但我们训练的模型优于最先进的面部模型,重建误差降低50%,而参数减少75%。我们还表明,用我们的自动编码器替换现有最先进的人脸模型的表达空间,可以实现更低的重建误差。 | ||
|
||
arXiv:https://arxiv.org/abs/1807.10267 | ||
|
||
github:https://github.com/anuragranj/coma | ||
|
||
# Image Captioning | ||
|
||
**《Recurrent Fusion Network for Image Captioning》** | ||
|
||
**ECCV 2018** | ||
|
||
Abstract:最近,看图说话(Image captioning)已经取得了很大进展,并且所有最先进的模型都采用了编码器 - 解码器框架。在此框架下,输入图像由卷积神经网络(CNN)编码,然后通过递归神经网络(RNN)转换为自然语言。依赖于该框架的现有模型仅使用一种CNN,例如ResNet或Inception-X,其仅从一个特定视点描述图像内容。因此,不能全面地理解输入图像的语义含义,这限制了captioning的性能。在本文中,为了利用来自多个编码器的补充信息,我们提出了一种用于处理看图说话的新型循环融合网络(RFNet)。我们模型中的融合过程可以利用图像编码器的输出之间的相互作用,然后为解码器生成新的紧凑但信息丰富的表示。 MSCOCO数据集上的实验证明了我们提出的RFNet的有效性,它为看图说话(image caption)提供了一种新的先进技术。 | ||
|
||
arXiv:https://arxiv.org/abs/1807.09986 | ||
|
||
注:Image Caption挺有意思的!CNN和RNN完美结合~ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters