forked from amusi/daily-paper-computer-vision
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
45 additions
and
19 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
**2018-07-31** | ||
|
||
这篇文章介绍两篇 ECCV 2018最新的 paper,一篇提出semi-convolutional等创新点来改进Mask RCNN;另一篇是提出CrossNet,一种使用跨尺度变形的端到端和全卷积深度神经网络,实现超分辨率。 | ||
|
||
# Instance Segmentation | ||
|
||
**《Semi-convolutional Operators for Instance Segmentation》** | ||
|
||
ECCV 2018 | ||
|
||
Abstract:目标检测(Object detection)和实例分割(instance segmentation)由基于区域的方法(例如Mask RCNN)主导。然而,人们越来越关注将这些问题减少到像素标记任务,因为后者可以更高效,可以在许多其他任务中使用的图像到图像(image-to-image)网络架构中无缝集成,并且对于不能由边界框近似的目标更加准确。在本文中,我们从理论和经验上表明,使用卷积算子不能轻易地实现构建可以分离对象实例的 dense pixel embeddings 。同时,我们表明简单的修改,我们称之为 semi-convolutional,其在这项任务中有更好的表现。我们证明了这些算子也可用于改进Mask RCNN等方法,展示了比单独使用Mask RCNN可实现的复杂生物形状和PASCAL VOC类别更好的分割。 | ||
|
||
arXiv:https://arxiv.org/abs/1807.10712 | ||
|
||
# Super Resolution | ||
|
||
|
||
**《CrossNet: An End-to-end Reference-based Super Resolution Network using Cross-scale Warping》** | ||
|
||
ECCV 2018 | ||
|
||
Abstract:The Reference-based Super-resolution (RefSR) super-resolves a low-resolution (LR) image given an external high-resolution (HR) reference image,其中参考图像和LR图像共享相似的视点但具有显著的分辨率间隙 x8。现有的RefSR方法以级联的方式工作,例如 patch匹配,然后是具有两个独立定义的目标函数的合成 pipeline,导致inter-patch misalignment,grid effect and inefficient optimization。为了解决这些问题,我们提出了CrossNet,一种使用跨尺度变形的端到端和全卷积深度神经网络。我们的网络包含图像编码器(encoder),cross-scale warping layers和融合解码器(decoder):编码器用于从LR和参考图像中提取多尺度特征;cross-scale warping layers在空间上将参考特征图与LR特征图对齐;解码器最终聚合来自两个域的特征映射以合成HR输出。使用跨尺度变形,我们的网络能够以端到端的方式在像素级执行空间对齐,从而改善现有方案的精度(大约2dB-4dB)和效率(超过100倍) 。 | ||
|
||
arXiv:https://arxiv.org/abs/1807.10547 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters