Skip to content

Commit

Permalink
fungi page
Browse files Browse the repository at this point in the history
  • Loading branch information
abursuc committed Dec 2, 2024
1 parent 33619b2 commit 6df57c5
Show file tree
Hide file tree
Showing 2 changed files with 75 additions and 0 deletions.
75 changes: 75 additions & 0 deletions _publications/2024_fungi.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
---
layout: publication
title: "No Train, all Gain: Self-Supervised Gradients Improve Deep Frozen Representations"
image: assets/img/publications/2024_fungi/overview.jpg
hide: false
category: [3d-perception, limited-supervision, foundation, unsupervised, self-supervised]
authors: Gilles Puy, Spyros Gidaris, Alexandre Boulch, Oriane Siméoni, Corentin Sautier, Patrick Pérez, Andrei Bursuc, Renaud Marlet
venue: CVPR
venue_long: Computer Vision and Pattern Recognition
year: 2024
month: 6
code_url: https://github.com/valeoai/ScaLR
paper_url: https://arxiv.org/abs/2310.17504
blog_url:
slides_url:
bib_url:
permalink: /publications/scalr/
---

<h1 align="center"> {{page.title}} </h1>
<!-- Simple call of authors -->
<!-- <h3 align="center"> {{page.authors}} </h3> -->
<!-- Alternatively you can add links to author pages -->
<h3 align="center"> <a href="https://sites.google.com/site/puygilles/home">Gilles Puy</a> &nbsp;&nbsp; <a href="https://scholar.google.fr/citations?user=7atfg7EAAAAJ&hl=en">Spyros Gidaris</a> &nbsp;&nbsp; <a href="https://www.boulch.eu/">Alexandre Boulch</a>&nbsp;&nbsp; <a href="https://osimeoni.github.io/">Oriane Siméoni</a> &nbsp;&nbsp; <a href="https://csautier.github.io/">Corentin Sautier</a> &nbsp;&nbsp; <a href="https://abursuc.github.io/">Andrei Bursuc</a> &nbsp;&nbsp; <a href="https://ptrckprz.github.io/">Patrick Pérez</a> &nbsp;&nbsp; <a href="http://imagine.enpc.fr/~marletr/">Renaud Marlet</a></h3>


<h3 align="center"> {{page.venue}} {{page.year}} </h3>

<div align="center">
<p>
{% if page.paper_url %}
<a href="{{ page.paper_url }}"><i class="far fa-file-pdf"></i> Paper</a>&nbsp;&nbsp;
{% endif %}
{% if page.code_url %}
<a href="{{ page.code_url }}"><i class="fab fa-github"></i> Code</a> &nbsp;&nbsp;
{% endif %}
{% if page.blog_url %}
<a href="{{ page.blog_url }}"><i class="fab fa-blogger"></i> Blog</a> &nbsp;&nbsp;
{% endif %}
{% if page.slides_url %}
<a href="{{ page.slides_url }}"><i class="far fa-file-pdf"></i> Slides</a>&nbsp;&nbsp;
{% endif %}
{% if page.bib_url %}
<a href="{{ page.bib_url}}"><i class="far fa-file-alt"></i> BibTeX</a>&nbsp;&nbsp;
{% endif %}
</p>
</div>

<div class="publication-teaser">
<img src="../../{{ page.image }}" alt="project teaser"/>
</div>


<hr>

<h2 align="center"> Abstract</h2>

<p align="justify">Self-supervised image backbones can be used to address complex 2D tasks (e.g., semantic segmentation, object discovery) very efficiently and with little or no downstream supervision. Ideally, 3D backbones for lidar should be able to inherit these properties after distillation of these powerful 2D features. The most recent methods for image-to-lidar distillation on autonomous driving data show promising results, obtained thanks to distillation methods that keep improving. Yet, we still notice a large performance gap when measuring the quality of distilled and fully supervised features by linear probing. In this work, instead of focusing only on the distillation method, we study the effect of three pillars for distillation: the 3D backbone, the pretrained 2D backbones, and the pretraining dataset. In particular, thanks to our scalable distillation method named ScaLR, we show that scaling the 2D and 3D backbones and pretraining on diverse datasets leads to a substantial improvement of the feature quality. This allows us to significantly reduce the gap between the quality of distilled and fully-supervised 3D features, and to improve the robustness of the pretrained backbones to domain gaps and perturbations. </p>


<hr>


<h2 align="center">BibTeX</h2>
<left>
<pre class="bibtex-box">
@inproceedings{puy24scalr,
title={Three Pillars improving Vision Foundation Model Distillation for Lidar},
author={Puy, Gilles and Gidaris, Spyros and Boulch, Alexandre and Sim\'eoni, Oriane and Sautier, Corentin and P\'erez, Patrick and Bursuc, Andrei and Marlet, Renaud},
booktitle={CVPR},
year={2024}
}</pre>
</left>

<br>
Binary file added assets/img/publications/2024_fungi/overview.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 6df57c5

Please sign in to comment.