Skip to content

Assisting library for the ML4CV tutorial based on scikit-learn.

License

Notifications You must be signed in to change notification settings

usamsabir/mlcv-tutorial

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Travis

mlcv-tutorial

Assisting library for the ML4CV tutorial based on scikit-learn.

It is recommended to use Python 3.6 in a virtual environment and install the latest stable versions of the dependencies. If not present, mlcv-tutorial will attempt to install them automatically.

Installation

Dependencies

mlcv-tutorial requires:

  • numpy (>= 1.13.3)
  • scipy (>= 0.19.1)
  • scikit-learn (>=0.19.0)
  • requests (>=2.14.2)
  • matplotlib (>=2.0.2)

User installation

  1. Create a virtual environment. If you use pip:

    python3 -m venv /path/to/new/virtual/environment_name
    

    or if you use conda:

    conda create -n environment_name python=3.6 anaconda
    
  2. Enter the virtual environment:

    source activate environment_name
    
  3. Install or upgrade the package:

    pip install --upgrade git+https://github.com/johny-c/mlcv-tutorial.git
    
  4. To exit the virtual environment:

    source deactivate
    

Usage

Enter the virtual environment you created. Upgrade regularly to get the latest version. Open a python script, import the package and use it in your own work!

from mlcv.templates.base import Solution

class MyEstimator(Solution):

    def __init__(param1=3, param2='gaussian'):
        # Store the passed parameters in your estimator instance
        self.param1 = param1
        self.param2 = param2

    def fit(X, y):
        # Train your estimator on the training inputs X and training targets y
        return self

    def predict(X):
        # Predict targets for the given testing inputs X.
        return y_pred

    def score(y_pred, y_true):
        # Evaluate your model
        return accuracy

Have a look at the examples directory for a complete use case.

About

Assisting library for the ML4CV tutorial based on scikit-learn.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.2%
  • Shell 29.8%