This project analyzes the Global Weather Repository dataset to forecast weather trends using both basic and advanced techniques.
data_loader.py
: Handles data loading, cleaning, and preprocessingexploratory_analysis.py
: Contains EDA functions and visualizationsforecasting_models.py
: Implements various forecasting modelsmain.py
: Main script that orchestrates the analysis
- Data cleaning and preprocessing
- Missing value handling
- Outlier detection and treatment
- Basic EDA with visualizations
- Temperature trend analysis
- Basic forecasting model
- Multiple forecasting models (Linear Regression, Random Forest, XGBoost)
- Ensemble modeling
- Geographical pattern analysis
- Correlation analysis
- Feature importance analysis
- Python 3.8+
- pandas
- numpy
- scikit-learn
- matplotlib
- seaborn
- xgboost
- Install required packages:
pip install pandas numpy scikit-learn matplotlib seaborn xgboost
-
Place the "Global Weather Repository.csv" file in the project directory
-
Run the analysis:
python main.py
The analysis includes:
- Visualization of temperature trends
- Correlation analysis of weather parameters
- Geographical weather patterns
- Model performance metrics
- Ensemble predictions
The project evaluates multiple models:
- Linear Regression
- Random Forest
- XGBoost
- Ensemble of all models
Metrics used:
- Mean Squared Error (MSE)
- Mean Absolute Error (MAE)
- R-squared Score# weather-trend-forecasting Advanced analysis of global weather trends using Python.