Skip to content

umairgcu/weather-trend-forecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Weather Trend Forecasting Project

This project analyzes the Global Weather Repository dataset to forecast weather trends using both basic and advanced techniques.

Project Structure

  • data_loader.py: Handles data loading, cleaning, and preprocessing
  • exploratory_analysis.py: Contains EDA functions and visualizations
  • forecasting_models.py: Implements various forecasting models
  • main.py: Main script that orchestrates the analysis

Features

Basic Assessment

  • Data cleaning and preprocessing
  • Missing value handling
  • Outlier detection and treatment
  • Basic EDA with visualizations
  • Temperature trend analysis
  • Basic forecasting model

Advanced Assessment

  • Multiple forecasting models (Linear Regression, Random Forest, XGBoost)
  • Ensemble modeling
  • Geographical pattern analysis
  • Correlation analysis
  • Feature importance analysis

Requirements

  • Python 3.8+
  • pandas
  • numpy
  • scikit-learn
  • matplotlib
  • seaborn
  • xgboost

Usage

  1. Install required packages:
pip install pandas numpy scikit-learn matplotlib seaborn xgboost
  1. Place the "Global Weather Repository.csv" file in the project directory

  2. Run the analysis:

python main.py

Results

The analysis includes:

  • Visualization of temperature trends
  • Correlation analysis of weather parameters
  • Geographical weather patterns
  • Model performance metrics
  • Ensemble predictions

Model Evaluation

The project evaluates multiple models:

  • Linear Regression
  • Random Forest
  • XGBoost
  • Ensemble of all models

Metrics used:

  • Mean Squared Error (MSE)
  • Mean Absolute Error (MAE)
  • R-squared Score# weather-trend-forecasting Advanced analysis of global weather trends using Python.

About

Advanced analysis of global weather trends using Python.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published