if (!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("tylin30/NTUCogTask")
library(NTUCogTask)
Note: During the installation, please check the console. It might ask user to update other R packages. Press 'Enter'.
1. cog_tidy
df <- cog_tidy("your_data_path", "Task_Code")
Put all your raw csv(s) in the same folder. cog_tidy will catch all csv(s) from the same task according to your Task_Code. This function will return a dataframe. Row is each subject (participant), Column is all the derived variables(feautures).
2. Create your own pipeline
df <- cog_rbindobs("your_data_path", "Task_Code") %>%
cog_datatype(., "Task_Code") %>%
cog_addnooutlier(., "Task_Code", range='outlier_range') %>%
cog_mutate(., "Task_Code") %>%
cog_unique(., "Task_Code")
You could also create you piple line and decide your inter-person outlier range (sd).
Task Name | Task Code |
---|---|
Simple Reaction Time & Choice Reaction Time | SRT_CRT |
Delayed Matching to Sample | DMS |
Memory of Association | MA |
Memory of Association - Object | MAO |
Delayed Response Task | DR |
Spatial Memory Task | SM |
Running Memory of Symbols | RMS |
Running Memory of Objects | RMO |
Running Memory of Locations | RML |
Rotation Span Task | RS |
Stop Signal Task | SST |
Stroop Task | Sp |
Antisaccade Arrow | As |
Color Trail Test | CTT |
Hearts and Flowers | HF |
Figure Task | Fg |
Enjoy! Comments or feedback are more than welcome.
e-mail: [email protected]