-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
wzt
committed
Aug 17, 2023
1 parent
21d9fbd
commit 9e53a05
Showing
3 changed files
with
389 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
194 changes: 194 additions & 0 deletions
194
configs/mv2d/exp/mv2d_r50_frcnn_single_frame_roi_1408x512_ep24.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
_base_ = [ | ||
'../data/single_frame.py', '../detectors/maskrcnn_r50.py' | ||
] | ||
|
||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
post_range = [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0] | ||
roi_size = 7 | ||
roi_srides = [16] | ||
|
||
model = dict( | ||
type='MV2D', | ||
use_grid_mask=dict( | ||
use_h=True, | ||
use_w=True, | ||
rotate=1, | ||
offset=False, | ||
ratio_range=(0.4, 0.6), | ||
mode=1, | ||
prob=0.7, | ||
interv_ratio=0.8 | ||
), | ||
# NOTE: | ||
# the FPN in faster r-cnn starts from p2 | ||
# we use p4 (downsample rate: 16) | ||
base_detector=dict( | ||
backbone=dict( | ||
with_cp=False, | ||
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), | ||
stage_with_dcn=(False, False, True, True), | ||
), | ||
), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 256, 256, 256, 256], | ||
out_channels=256, | ||
start_level=2, | ||
end_level=2, | ||
num_outs=1, | ||
), | ||
roi_head=dict( | ||
type='MV2DSHead', | ||
pc_range=point_cloud_range, | ||
force_fp32=True, | ||
use_denoise=False, | ||
|
||
bbox_roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', output_size=roi_size, sampling_ratio=-1), | ||
featmap_strides=roi_srides, | ||
out_channels=512, ), | ||
bbox_head=dict( | ||
type='CrossAttentionBoxHead', | ||
num_classes=10, | ||
pc_range=point_cloud_range, | ||
transformer=dict( | ||
type='MV2DTransformer', | ||
decoder=dict( | ||
type='PETRTransformerDecoder', | ||
return_intermediate=True, | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type='PETRTransformerDecoderLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='FlattenMHSelfAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
dict( | ||
type='PETRMultiheadAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
], | ||
feedforward_channels=2048, | ||
ffn_dropout=0.1, | ||
with_cp=False, ###use checkpoint to save memory | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm')), | ||
)), | ||
bbox_coder=dict( | ||
type='NMSFreeCoder', | ||
post_center_range=post_range, | ||
pc_range=point_cloud_range, | ||
max_num=300, | ||
num_classes=10), | ||
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.5, 1.5, 2.0, 2.0], | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=2.0, | ||
), | ||
loss_bbox=dict(type='L1Loss', loss_weight=0.25), | ||
), | ||
query_generator=dict( | ||
with_avg_pool=True, | ||
num_shared_convs=1, | ||
num_shared_fcs=1, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=roi_size, | ||
extra_encoding=dict( | ||
num_layers=2, | ||
feat_channels=[512, 256], | ||
features=[dict(type='intrinsic', in_channels=16,)] | ||
), | ||
), | ||
pe=dict( | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding3D', num_feats=128, normalize=True), | ||
strides=roi_srides, | ||
position_range=post_range, | ||
depth_num=64, | ||
with_fpe=True, | ||
), | ||
box_correlation=dict( | ||
correlation_mode='topk_matched:1:0.0:0.0', | ||
), | ||
), | ||
train_cfg=dict( | ||
complement_2d_gt=0.4, | ||
detection_proposal=dict( | ||
score_thr=0.05, | ||
nms_pre=1000, | ||
max_per_img=75, | ||
nms=dict(type='nms', iou_threshold=0.6, class_agnostic=True, ), | ||
min_bbox_size=8), | ||
rcnn=dict( | ||
stage_loss_weights=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1], | ||
assigner=dict( | ||
type='HungarianAssigner3D', | ||
cls_cost=dict(type='FocalLossCost', weight=2.0), | ||
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), | ||
iou_cost=dict(type='IoUCost', weight=0.0), | ||
# Fake cost. This is just to make it compatible with DETR head. | ||
pc_range=point_cloud_range), | ||
sampler_cfg=dict(type='PseudoSampler'), | ||
pos_weight=-1, | ||
debug=False) | ||
), | ||
test_cfg=dict( | ||
detection_proposal=dict( | ||
score_thr=0.05, | ||
nms_pre=1000, | ||
max_per_img=75, | ||
nms=dict(type='nms', iou_threshold=0.6, class_agnostic=True, ), | ||
min_bbox_size=8), | ||
rcnn=dict( | ||
score_thr=0.0, | ||
nms=dict(nms_thr=1.0, use_rotate_nms=True, ), | ||
max_per_scene=300, | ||
)) | ||
) | ||
|
||
data = dict( | ||
workers_per_gpu=4, | ||
) | ||
|
||
optimizer = dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=2e-4, | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'base_detector.backbone': dict(lr_mult=0.25), | ||
} | ||
), | ||
weight_decay=0.01) | ||
|
||
optimizer_config = dict( | ||
_delete_=True, | ||
grad_clip=dict(max_norm=35, norm_type=2) | ||
) | ||
|
||
lr_config = dict( | ||
_delete_=True, | ||
policy='CosineAnnealing', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
min_lr_ratio=1e-3, | ||
) | ||
total_epochs = 24 | ||
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs) | ||
evaluation = dict(interval=3, ) | ||
find_unused_parameters = False | ||
log_config = dict(interval=50) | ||
|
||
|
||
|
||
|
||
|
194 changes: 194 additions & 0 deletions
194
configs/mv2d/exp/mv2d_r50_frcnn_single_frame_roi_1408x512_ep72.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
_base_ = [ | ||
'../data/single_frame.py', '../detectors/maskrcnn_r50.py' | ||
] | ||
|
||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
post_range = [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0] | ||
roi_size = 7 | ||
roi_srides = [16] | ||
|
||
model = dict( | ||
type='MV2D', | ||
use_grid_mask=dict( | ||
use_h=True, | ||
use_w=True, | ||
rotate=1, | ||
offset=False, | ||
ratio_range=(0.4, 0.6), | ||
mode=1, | ||
prob=0.7, | ||
interv_ratio=0.8 | ||
), | ||
# NOTE: | ||
# the FPN in faster r-cnn starts from p2 | ||
# we use p4 (downsample rate: 16) | ||
base_detector=dict( | ||
backbone=dict( | ||
with_cp=False, | ||
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), | ||
stage_with_dcn=(False, False, True, True), | ||
), | ||
), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 256, 256, 256, 256], | ||
out_channels=256, | ||
start_level=2, | ||
end_level=2, | ||
num_outs=1, | ||
), | ||
roi_head=dict( | ||
type='MV2DSHead', | ||
pc_range=point_cloud_range, | ||
force_fp32=True, | ||
use_denoise=False, | ||
|
||
bbox_roi_extractor=dict( | ||
type='SingleRoIExtractor', | ||
roi_layer=dict(type='RoIAlign', output_size=roi_size, sampling_ratio=-1), | ||
featmap_strides=roi_srides, | ||
out_channels=512, ), | ||
bbox_head=dict( | ||
type='CrossAttentionBoxHead', | ||
num_classes=10, | ||
pc_range=point_cloud_range, | ||
transformer=dict( | ||
type='MV2DTransformer', | ||
decoder=dict( | ||
type='PETRTransformerDecoder', | ||
return_intermediate=True, | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type='PETRTransformerDecoderLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='FlattenMHSelfAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
dict( | ||
type='PETRMultiheadAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
dropout=0.1), | ||
], | ||
feedforward_channels=2048, | ||
ffn_dropout=0.1, | ||
with_cp=False, ###use checkpoint to save memory | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm')), | ||
)), | ||
bbox_coder=dict( | ||
type='NMSFreeCoder', | ||
post_center_range=post_range, | ||
pc_range=point_cloud_range, | ||
max_num=300, | ||
num_classes=10), | ||
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.5, 1.5, 2.0, 2.0], | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=2.0, | ||
), | ||
loss_bbox=dict(type='L1Loss', loss_weight=0.25), | ||
), | ||
query_generator=dict( | ||
with_avg_pool=True, | ||
num_shared_convs=1, | ||
num_shared_fcs=1, | ||
in_channels=256, | ||
fc_out_channels=1024, | ||
roi_feat_size=roi_size, | ||
extra_encoding=dict( | ||
num_layers=2, | ||
feat_channels=[512, 256], | ||
features=[dict(type='intrinsic', in_channels=16,)] | ||
), | ||
), | ||
pe=dict( | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding3D', num_feats=128, normalize=True), | ||
strides=roi_srides, | ||
position_range=post_range, | ||
depth_num=64, | ||
with_fpe=True, | ||
), | ||
box_correlation=dict( | ||
correlation_mode='topk_matched:1:0.0:0.0', | ||
), | ||
), | ||
train_cfg=dict( | ||
complement_2d_gt=0.4, | ||
detection_proposal=dict( | ||
score_thr=0.05, | ||
nms_pre=1000, | ||
max_per_img=75, | ||
nms=dict(type='nms', iou_threshold=0.6, class_agnostic=True, ), | ||
min_bbox_size=8), | ||
rcnn=dict( | ||
stage_loss_weights=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1], | ||
assigner=dict( | ||
type='HungarianAssigner3D', | ||
cls_cost=dict(type='FocalLossCost', weight=2.0), | ||
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), | ||
iou_cost=dict(type='IoUCost', weight=0.0), | ||
# Fake cost. This is just to make it compatible with DETR head. | ||
pc_range=point_cloud_range), | ||
sampler_cfg=dict(type='PseudoSampler'), | ||
pos_weight=-1, | ||
debug=False) | ||
), | ||
test_cfg=dict( | ||
detection_proposal=dict( | ||
score_thr=0.05, | ||
nms_pre=1000, | ||
max_per_img=75, | ||
nms=dict(type='nms', iou_threshold=0.6, class_agnostic=True, ), | ||
min_bbox_size=8), | ||
rcnn=dict( | ||
score_thr=0.0, | ||
nms=dict(nms_thr=1.0, use_rotate_nms=True, ), | ||
max_per_scene=300, | ||
)) | ||
) | ||
|
||
data = dict( | ||
workers_per_gpu=4, | ||
) | ||
|
||
optimizer = dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=2e-4, | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'base_detector.backbone': dict(lr_mult=0.25), | ||
} | ||
), | ||
weight_decay=0.01) | ||
|
||
optimizer_config = dict( | ||
_delete_=True, | ||
grad_clip=dict(max_norm=35, norm_type=2) | ||
) | ||
|
||
lr_config = dict( | ||
_delete_=True, | ||
policy='CosineAnnealing', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
min_lr_ratio=1e-3, | ||
) | ||
total_epochs = 72 | ||
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs) | ||
evaluation = dict(interval=6, ) | ||
find_unused_parameters = False | ||
log_config = dict(interval=50) | ||
|
||
|
||
|
||
|
||
|