VOICEVOX のエンジンです。
実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。
(エディターは VOICEVOX 、 コアは VOICEVOX CORE 、 全体構成は こちら に詳細があります。)
こちらから対応するエンジンをダウンロードしてください。
API ドキュメントをご参照ください。
VOICEVOX エンジンもしくはエディタを起動した状態で http://localhost:50021/docs にアクセスすると、起動中のエンジンのドキュメントも確認できます。
今後の方針などについては VOICEVOX 音声合成エンジンとの連携 も参考になるかもしれません。
リクエスト・レスポンスの文字コードはすべて UTF-8 です。
echo -n "こんにちは、音声合成の世界へようこそ" >text.txt
curl -s \
-X POST \
"localhost:50021/audio_query?speaker=1"\
--get --data-urlencode [email protected] \
> query.json
curl -s \
-H "Content-Type: application/json" \
-X POST \
-d @query.json \
"localhost:50021/synthesis?speaker=1" \
> audio.wav
生成される音声はサンプリングレートが 24000Hz と少し特殊なため、音声プレーヤーによっては再生できない場合があります。
speaker
に指定する値は /speakers
エンドポイントで得られる style_id
です。互換性のために speaker
という名前になっています。
/audio_query
のレスポンスにはエンジンが判断した読み方が AquesTalk ライクな記法(本家の記法とは一部異なります)で記録されています。
記法は次のルールに従います。
- 全てのカナはカタカナで記述される
- アクセント句は
/
または、
で区切る。、
で区切った場合に限り無音区間が挿入される。 - カナの手前に
_
を入れるとそのカナは無声化される - アクセント位置を
'
で指定する。全てのアクセント句にはアクセント位置を 1 つ指定する必要がある。 - アクセント句末に
?
(全角)を入れることにより疑問文の発音ができる
# 読ませたい文章をutf-8でtext.txtに書き出す
echo -n "ディープラーニングは万能薬ではありません" >text.txt
curl -s \
-X POST \
"localhost:50021/audio_query?speaker=1" \
--get --data-urlencode [email protected] \
> query.json
cat query.json | grep -o -E "\"kana\":\".*\""
# 結果... "kana":"ディ'イプ/ラ'アニングワ/バンノオヤクデワアリマセ'ン"
# "ディイプラ'アニングワ/バンノ'オヤクデワ/アリマセ'ン"と読ませたいので、
# is_kana=trueをつけてイントネーションを取得しnewphrases.jsonに保存
echo -n "ディイプラ'アニングワ/バンノ'オヤクデワ/アリマセ'ン" > kana.txt
curl -s \
-X POST \
"localhost:50021/accent_phrases?speaker=1&is_kana=true" \
--get --data-urlencode [email protected] \
> newphrases.json
# query.jsonの"accent_phrases"の内容をnewphrases.jsonの内容に置き換える
cat query.json | sed -e "s/\[{.*}\]/$(cat newphrases.json)/g" > newquery.json
curl -s \
-H "Content-Type: application/json" \
-X POST \
-d @newquery.json \
"localhost:50021/synthesis?speaker=1" \
> audio.wav
APIからユーザー辞書の参照、単語の追加、編集、削除を行うことができます。
/user_dict
にGETリクエストを投げることでユーザー辞書の一覧を取得することができます。
curl -s -X GET "localhost:50021/user_dict"
/user_dict_word
にPOSTリクエストを投げる事でユーザー辞書に単語を追加することができます。
URLパラメータとして、以下が必要です。
- surface (辞書に登録する単語)
- pronunciation (カタカナでの読み方)
- accent_type (アクセント核位置、整数)
アクセント核位置については、こちらの文章が参考になるかと思います。
〇型となっている数字の部分がアクセント核位置になります。
https://tdmelodic.readthedocs.io/ja/latest/pages/introduction.html
成功した場合の返り値は単語に割り当てられるUUIDの文字列になります。
surface="test"
pronunciation="テスト"
accent_type="1"
curl -s -X POST "localhost:50021/user_dict_word" \
--get \
--data-urlencode "surface=$surface" \
--data-urlencode "pronunciation=$pronunciation" \
--data-urlencode "accent_type=$accent_type"
/user_dict_word/{word_uuid}
にPUTリクエストを投げる事でユーザー辞書の単語を修正することができます。
URLパラメータとして、以下が必要です。
- surface (辞書に登録するワード)
- pronunciation (カタカナでの読み方)
- accent_type (アクセント核位置、整数)
word_uuidは単語追加時に確認できるほか、ユーザー辞書を参照することでも確認できます。
成功した場合の返り値は204 No Content
になります。
surface="test2"
pronunciation="テストツー"
accent_type="2"
# 環境によってword_uuidは適宜書き換えてください
word_uuid="cce59b5f-86ab-42b9-bb75-9fd3407f1e2d"
curl -s -X PUT "localhost:50021/user_dict_word/$word_uuid" \
--get \
--data-urlencode "surface=$surface" \
--data-urlencode "pronunciation=$pronunciation" \
--data-urlencode "accent_type=$accent_type"
/user_dict_word/{word_uuid}
にDELETEリクエストを投げる事でユーザー辞書の単語を削除することができます。
word_uuidは単語追加時に確認できるほか、ユーザー辞書を参照することでも確認できます。
成功した場合の返り値は204 No Content
になります。
# 環境によってword_uuidは適宜書き換えてください
word_uuid="cce59b5f-86ab-42b9-bb75-9fd3407f1e2d"
curl -s -X DELETE "localhost:50021/user_dict_word/$word_uuid"
presets.yaml
を編集することで話者や話速などのプリセットを使うことができます。
echo -n "プリセットをうまく活用すれば、サードパーティ間で同じ設定を使うことができます" >text.txt
# プリセット情報を取得
curl -s -X GET "localhost:50021/presets" > presets.json
preset_id=$(cat presets.json | sed -r 's/^.+"id"\:\s?([0-9]+?).+$/\1/g')
style_id=$(cat presets.json | sed -r 's/^.+"style_id"\:\s?([0-9]+?).+$/\1/g')
# AudioQueryの取得
curl -s \
-X POST \
"localhost:50021/audio_query_from_preset?preset_id=$preset_id"\
--get --data-urlencode [email protected] \
> query.json
# 音声合成
curl -s \
-H "Content-Type: application/json" \
-X POST \
-d @query.json \
"localhost:50021/synthesis?speaker=$style_id" \
> audio.wav
speaker_uuid
は、/speakers
で確認できますid
は重複してはいけません- エンジン起動後にファイルを書き換えるとエンジンに反映されます
/synthesis_morphing
では、2 人の話者でそれぞれ合成された音声を元に、モーフィングした音声を生成します。
echo -n "モーフィングを利用することで、2つの声を混ぜることができます。" > text.txt
curl -s \
-X POST \
"localhost:50021/audio_query?speaker=0"\
--get --data-urlencode [email protected] \
> query.json
# 元の話者での合成結果
curl -s \
-H "Content-Type: application/json" \
-X POST \
-d @query.json \
"localhost:50021/synthesis?speaker=0" \
> audio.wav
export MORPH_RATE=0.5
# 話者2人分の音声合成+WORLDによる音声分析が入るため時間が掛かるので注意
curl -s \
-H "Content-Type: application/json" \
-X POST \
-d @query.json \
"localhost:50021/synthesis_morphing?base_speaker=0&target_speaker=1&morph_rate=$MORPH_RATE" \
> audio.wav
export MORPH_RATE=0.9
# query、base_speaker、target_speakerが同じ場合はキャッシュが使用されるため比較的高速に生成される
curl -s \
-H "Content-Type: application/json" \
-X POST \
-d @query.json \
"localhost:50021/synthesis_morphing?base_speaker=0&target_speaker=1&morph_rate=$MORPH_RATE" \
> audio.wav
追加情報の中の portrait.png を取得するコードです。
(jqを使用して json をパースしています。)
curl -s -X GET "localhost:50021/speaker_info?speaker_uuid=7ffcb7ce-00ec-4bdc-82cd-45a8889e43ff" \
| jq -r ".portrait" \
| base64 -d \
> portrait.png
/cancellable_synthesis
では通信を切断した場合に即座に計算リソースが開放されます。
(/synthesis
では通信を切断しても最後まで音声合成の計算が行われます)
この API は実験的機能であり、エンジン起動時に引数で--enable_cancellable_synthesis
を指定しないと有効化されません。
音声合成に必要なパラメータは/synthesis
と同様です。
VOICEVOXではセキュリティ保護のためlocalhost
・127.0.0.1
・app://
・Originなし以外のOriginからリクエストを受け入れないようになっています。
そのため、一部のサードパーティアプリからのレスポンスを受け取れない可能性があります。
これを回避する方法として、エンジンから設定できるUIを用意しています。
- http://127.0.0.1:50021/setting にアクセスします。
- 利用するアプリに合わせて設定を変更、追加してください。
- 保存ボタンを押して、変更を確定してください。
- 設定の適用にはエンジンの再起動が必要です。必要に応じて再起動をしてください。
エンジンディレクトリ内にあるファイルを全て消去し、新しいものに置き換えてください。
docker pull voicevox/voicevox_engine:cpu-ubuntu20.04-latest
docker run --rm -p '127.0.0.1:50021:50021' voicevox/voicevox_engine:cpu-ubuntu20.04-latest
docker pull voicevox/voicevox_engine:nvidia-ubuntu20.04-latest
docker run --rm --gpus all -p '127.0.0.1:50021:50021' voicevox/voicevox_engine:nvidia-ubuntu20.04-latest
GPU版を利用する場合、環境によってエラーが発生することがあります。その場合、--runtime=nvidia
をdocker run
につけて実行すると解決できることがあります。
Issue を解決するプルリクエストを作成される際は、別の方と同じ Issue に取り組むことを避けるため、 Issue 側で取り組み始めたことを伝えるか、最初に Draft プルリクエストを作成してください。
Python 3.8.10
を用いて開発されています。
インストールするには、各 OS ごとの C/C++ コンパイラ、CMake が必要になります。
# 開発に必要なライブラリのインストール
python -m pip install -r requirements-dev.txt -r requirements-test.txt
# とりあえず実行したいだけなら代わりにこちら
python -m pip install -r requirements.txt
コマンドライン引数の詳細は以下のコマンドで確認してください。
python run.py --help
# 製品版 VOICEVOX でサーバーを起動
VOICEVOX_DIR="C:/path/to/voicevox" # 製品版 VOICEVOX ディレクトリのパス
python run.py --voicevox_dir=$VOICEVOX_DIR
# モックでサーバー起動
python run.py --enable_mock
# ログをUTF8に変更
python run.py --output_log_utf8
# もしくは VV_OUTPUT_LOG_UTF8=1 python run.py
CPU スレッド数が未指定の場合は、論理コア数の半分か物理コア数が使われます。(殆どの CPU で、これは全体の処理能力の半分です)
もし IaaS 上で実行していたり、専用サーバーで実行している場合など、
エンジンが使う処理能力を調節したい場合は、CPU スレッド数を指定することで実現できます。
-
実行時引数で指定する
python run.py --voicevox_dir=$VOICEVOX_DIR --cpu_num_threads=4
-
環境変数で指定する
export VV_CPU_NUM_THREADS=4 python run.py --voicevox_dir=$VOICEVOX_DIR
VOICEVOX Core 0.5.4以降のコアを使用する事が可能です。
Macでのlibtorch版コアのサポートはしていません。
製品版VOICEVOXもしくはコンパイル済みエンジンのディレクトリを--voicevox_dir
引数で指定すると、そのバージョンのコアが使用されます。
python run.py --voicevox_dir="/path/to/voicevox"
Macでは、DYLD_LIBRARY_PATH
の指定が必要です。
DYLD_LIBRARY_PATH="/path/to/voicevox" python run.py --voicevox_dir="/path/to/voicevox"
VOICEVOX Coreのzipファイルを解凍したディレクトリを--voicelib_dir
引数で指定します。
また、コアのバージョンに合わせて、libtorchやonnxruntimeのディレクトリを--runtime_dir
引数で指定します。
ただし、システムの探索パス上にlibtorch、onnxruntimeがある場合、--runtime_dir
引数の指定は不要です。
--voicelib_dir
引数、--runtime_dir
引数は複数回使用可能です。
APIエンドポイントでコアのバージョンを指定する場合はcore_version
引数を指定してください。(未指定の場合は最新のコアが使用されます)
python run.py --voicelib_dir="/path/to/voicevox_core" --runtime_dir="/path/to/libtorch_or_onnx"
Macでは、--runtime_dir
引数の代わりにDYLD_LIBRARY_PATH
の指定が必要です。
DYLD_LIBRARY_PATH="/path/to/onnx" python run.py --voicelib_dir="/path/to/voicevox_core"
このソフトウェアでは、リモートにプッシュする前にコードフォーマットを確認する仕組み(静的解析ツール)を利用できます。 利用するには、開発に必要なライブラリのインストールに加えて、以下のコマンドを実行してください。 プルリクエストを作成する際は、利用することを推奨します。
pre-commit install -t pre-push
エラーが出た際は、以下のコマンドで修正することが可能です。なお、完全に修正できるわけではないので注意してください。
pysen run format lint
typos を使ってタイポのチェックを行っています。 typos をインストール した後
typos
でタイポチェックを行えます。
もし誤判定やチェックから除外すべきファイルがあれば
設定ファイルの説明 に従って_typos.toml
を編集してください。
API ドキュメント(実体はdocs/api/index.html
)は自動で更新されます。
次のコマンドで API ドキュメントを手動で作成することができます。
python make_docs.py
この方法でビルドしたものは、リリースで公開されているものとは異なります。 また、GPUで利用するにはcuDNNやCUDA、DirectMLなどのライブラリが追加で必要となります。
python -m pip install -r requirements-dev.txt
OUTPUT_LICENSE_JSON_PATH=licenses.json \
bash build_util/create_venv_and_generate_licenses.bash
# ビルド自体はLIBCORE_PATH及びLIBONNXRUNTIME_PATHの指定がなくても可能です
LIBCORE_PATH="/path/to/libcore" \
LIBONNXRUNTIME_PATH="/path/to/libonnxruntime" \
pyinstaller --noconfirm run.spec
Poetry を用いて依存ライブラリのバージョンを固定しています。 以下のコマンドで操作できます:
# パッケージを追加する場合
poetry add `パッケージ名`
poetry add --group dev `パッケージ名` # 開発依存の追加
poetry add --group test `パッケージ名` # テスト依存の追加
# パッケージをアップデートする場合
poetry update `パッケージ名`
poetry update # 全部更新
# requirements.txtの更新
poetry export --without-hashes -o requirements.txt # こちらを更新する場合は下3つも更新する必要があります。
poetry export --without-hashes --with dev -o requirements-dev.txt
poetry export --without-hashes --with test -o requirements-test.txt
poetry export --without-hashes --with license -o requirements-license.txt
依存ライブラリは「コアビルド時にリンクして一体化しても、コア部のコード非公開 OK」なライセンスを持つ必要があります。
主要ライセンスの可否は以下の通りです。
- MIT/Apache/BSD-3: OK
- LGPL: OK (コアと動的分離されているため)
- GPL: NG (全関連コードの公開が必要なため)
以下のコマンドで openjtalk のユーザー辞書をコンパイルできます。
python -c "import pyopenjtalk; pyopenjtalk.create_user_dict('default.csv','user.dic')"
VOICEVOX エディターでは、複数のエンジンを同時に起動することができます。 この機能を利用することで、自作の音声合成エンジンや既存の音声合成エンジンを VOICEVOX エディター上で動かすことが可能です。
VOICEVOX API に準拠した複数のエンジンを統一的に扱います。それぞれのエンジンは EngineID で管理されます。
VOICEVOX API に準拠することで対応が可能です。 API のうちどのエンドポイントに対応すればよいかはまだ明確に定めていませんが、基本的にこの VOICEVOX ENGINE リポジトリを fork し、一部の機能を改造することでの開発をおすすめします。
エンジンの情報はエンジンマニフェスト(engine_manifest.json
)で管理されています。
マニフェストファイル内の情報を見て適宜変更してください。
音声合成エンジンによっては、例えばモーフィング機能など、VOICEVOX と同じ機能を持つことができない場合があります。
その場合はマニフェストファイル内のsupported_features
内の情報を適宜変更してください。
VVPP ファイルとして配布するのがおすすめです。
VVPP は「VOICEVOX プラグインパッケージ」の略で、ビルドしたエンジンをディレクトリごと Zip 化して拡張子を.vvpp
に変更したものです。
VOICEVOX エディターは VVPP をローカルディスク上に展開したあと、ルートの直下にあるengine_manifest.json
に従ってファイルを探査します。
VOICEVOX エディターにうまく読み込ませられないときは、エディターのエラーログを参照してください。
また、xxx.vvpp
は分割して連番を付けたxxx.0.vvppp
ファイルとして配布することも可能です。
これはファイル容量が大きくて配布が困難な場合に有用です。
name | description |
---|---|
DOCKERHUB_USERNAME | Docker Hub ユーザ名 |
DOCKERHUB_TOKEN | Docker Hub アクセストークン |
voicevox-client @tuna2134 ・・・ VOICEVOX ENGINE のためのPythonラッパー
LGPL v3 と、ソースコードの公開が不要な別ライセンスのデュアルライセンスです。 別ライセンスを取得したい場合は、ヒホ(twitter: @hiho_karuta)に求めてください。