Skip to content

Commit

Permalink
Some extra doctests and explanations about the e=0 case.
Browse files Browse the repository at this point in the history
  • Loading branch information
tscrim committed May 2, 2024
1 parent eda9f3d commit 4c94243
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 2 deletions.
10 changes: 10 additions & 0 deletions src/sage/combinat/partition.py
Original file line number Diff line number Diff line change
Expand Up @@ -3025,8 +3025,18 @@ def ladders(self, e):
sage: Partition([3, 2]).ladders(3)
{0: [(0, 0)], 1: [(0, 1)], 2: [(0, 2), (1, 0)], 3: [(1, 1)]}
When ``e`` is ``0``, the cells are in bijection with the ladders,
but the index of the ladder depends on the size of the partition::
sage: Partition([3, 2]).ladders(0)
{0: [(0, 0)], 1: [(0, 1)], 2: [(0, 2)], 5: [(1, 0)], 6: [(1, 1)]}
sage: Partition([3, 2, 1]).ladders(0)
{0: [(0, 0)], 1: [(0, 1)], 2: [(0, 2)], 6: [(1, 0)], 7: [(1, 1)],
12: [(2, 0)]}
sage: Partition([3, 1, 1]).ladders(0)
{0: [(0, 0)], 1: [(0, 1)], 2: [(0, 2)], 5: [(1, 0)], 10: [(2, 0)]}
sage: Partition([1, 1, 1]).ladders(0)
{0: [(0, 0)], 3: [(1, 0)], 6: [(2, 0)]}
"""
if e == 0:
e = sum(self) + 1
Expand Down
23 changes: 21 additions & 2 deletions src/sage/combinat/symmetric_group_algebra.py
Original file line number Diff line number Diff line change
Expand Up @@ -1248,7 +1248,7 @@ def ladder_idemponent(self, la):
r"""
Return the ladder idempontent of ``self``.
Let `F` be a field of characteristic `p > 0`. The *ladder idempotent*
Let `F` be a field of characteristic `p`. The *ladder idempotent*
of shape `\lambda` is the idempotent of `F[S_n]` defined as follows.
Let `T` be the :meth:`ladder tableau
<sage.combinat.partition.Partition.ladder_tableau>` of shape `\lambda`.
Expand All @@ -1264,7 +1264,7 @@ def ladder_idemponent(self, la):
where `E_{UU}` is the :meth:`seminormal_basis` element over `\QQ`
and we project the sum to `F`, `S_{\alpha}` is the Young subgroup
corresponding to `\alpha`, and `\alpha! = \alpha_1 ! \cdots \alpha_k !`.
corresponding to `\alpha`, and `\alpha! = \alpha_1! \cdots \alpha_k!`.
EXAMPLES::
Expand Down Expand Up @@ -1293,6 +1293,25 @@ def ladder_idemponent(self, la):
2*[1, 2, 3, 4] + [1, 2, 4, 3] + [2, 1, 3, 4] + 2*[2, 1, 4, 3]
+ 2*[3, 4, 1, 2] + [3, 4, 2, 1] + [4, 3, 1, 2] + 2*[4, 3, 2, 1]
When `p = 0`, these idempotents will generate all of the simple
modules (which are the :meth:`specht_modules` and also projective)::
sage: SGA = SymmetricGroupAlgebra(QQ, 5)
sage: for la in Partitions(SGA.n):
....: idem = SGA.ladder_idemponent(la)
....: assert idem^2 == idem
....: print(la, SGA.principal_ideal(idem).dimension())
....:
[5] 1
[4, 1] 4
[3, 2] 5
[3, 1, 1] 6
[2, 2, 1] 5
[2, 1, 1, 1] 4
[1, 1, 1, 1, 1] 1
sage: [StandardTableaux(la).cardinality() for la in Partitions(SGA.n)]
[1, 4, 5, 6, 5, 4, 1]
REFERENCES:
- [Ryo2015]_
Expand Down

0 comments on commit 4c94243

Please sign in to comment.