Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

manifest and endpoint updates #15

Merged
merged 19 commits into from
Aug 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 13 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,17 +1,18 @@
## Overview
# Overview

| Developed by | Tryolabs |
| --- | --- |
| Date of development | Feb 15, 2024 |
| Validator type | Format |
| Blog | - |
| Blog | |
| License | Apache 2 |
| Input/Output | Output |

## Description

### Intended Use
This validator checks if a text is related with a topic.

## Requirements
### Requirements

* Dependencies:
- guardrails-ai>=0.4.0
Expand All @@ -22,15 +23,15 @@ This validator checks if a text is related with a topic.
* Foundation model access keys:
- OPENAI_API_KEY

# Installation
## Installation

```bash
guardrails hub install hub://tryolabs/restricttotopic
$ guardrails hub install hub://tryolabs/restricttotopic
```

# Usage Examples
## Usage Examples

## Validating string output via Python
### Validating string output via Python

In this example, we apply the validator to a string output generated by an LLM.

Expand Down Expand Up @@ -59,7 +60,7 @@ The Beatles were a charismatic English pop-rock band of the 1960s.
""") # Validator fails
```

## Validating JSON output via Python
### Validating JSON output via Python

In this example, we apply the validator to a string field of a JSON output generated by an LLM.

Expand Down Expand Up @@ -113,7 +114,7 @@ Initializes a new instance of the RestrictToTopic class.
</ul>
<br/>

**`validate(self, value, metadata) ValidationResult`**
**`validate(self, value, metadata) -> ValidationResult`**
<ul>
Validates the given `value` using the rules defined in this validator, relying on the `metadata` provided to customize the validation process. This method is automatically invoked by `guard.parse(...)`, ensuring the validation logic is applied to the input data.

Expand All @@ -123,6 +124,6 @@ Note:
2. When invoking `guard.parse(...)`, ensure to pass the appropriate `metadata` dictionary that includes keys and values required by this validator. If `guard` is associated with multiple validators, combine all necessary metadata into a single dictionary.

**Parameters**
- **`value`** *(Any):* The input value to validate.
- **`metadata`** *(dict):* A dictionary containing metadata required for validation. No additional metadata keys are needed for this validator.
- **`value`** *(Any)*: The input value to validate.
- **`metadata`** *(dict)*: A dictionary containing metadata required for validation. No additional metadata keys are needed for this validator.
</ul>
76 changes: 76 additions & 0 deletions app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Union
from transformers import pipeline
import torch
import os

app = FastAPI()

env = os.environ.get("env", "dev")
torch_device = "cuda" if env == "prod" else "cpu"

# Initialize the zero-shot classification pipeline
classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli",
device=torch.device(torch_device),
hypothesis_template="This example has to do with topic {}.",
multi_label=True,
)

class InferenceData(BaseModel):
name: str
shape: List[int]
data: Union[List[str], List[float]]
datatype: str

class InputRequest(BaseModel):
text: str
candidate_topics: List[str]
zero_shot_threshold: float = 0.5

class OutputResponse(BaseModel):
modelname: str
modelversion: str
outputs: List[InferenceData]

@app.post("/validate", response_model=OutputResponse)
def restrict_to_topic(input_request: InputRequest):
print('make request')

text = input_request.text
candidate_topics = input_request.candidate_topics
zero_shot_threshold = input_request.zero_shot_threshold


if text is None or candidate_topics is None:
raise HTTPException(status_code=400, detail="Invalid input format")

# Perform zero-shot classification
result = classifier(text, candidate_topics)
print("result: ", result)
topics = result["labels"]
scores = result["scores"]
found_topics = [topic for topic, score in zip(topics, scores) if score > zero_shot_threshold]

if not found_topics:
found_topics = ["No valid topic found."]

output_data = OutputResponse(
modelname="RestrictToTopicModel",
modelversion="1",
outputs=[
InferenceData(
name="results",
datatype="BYTES",
shape=[len(found_topics)],
data=found_topics
)
]
)

return output_data

# Run the app with uvicorn
# Save this script as app.py and run with: uvicorn app:app --reload
39 changes: 39 additions & 0 deletions inferless.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Inferless config file (version: 1.0.0)
version: 1.0.0

name: Restrict-To-Topic
import_source: GIT

# you can choose the options between ONNX, TENSORFLOW, PYTORCH
source_framework_type: PYTORCH

configuration:
# if you want to use a custom runtime, add the runtime id below.
# you can find it by running `inferless r6897f8untime list` or create one with `inferless runtime upload` and update this file it by running `inferless runtime select --id <RUNTIME_ID>`.
custom_runtime_id: 035c210b-3425-43d7-be4f-f341fae13842
custom_runtime_version: '0'

# if you want to use a custom volume, add the volume id and name below,
# you can find it by running `inferless volume list` or create one with `inferless volume create -n {VOLUME_NAME}`
custom_volume_id: ''
custom_volume_name: ''

gpu_type: T4
inference_time: '180'
is_dedicated: false
is_serverless: false
max_replica: '1'
min_replica: '0'
scale_down_delay: '600'
region: region-1
vcpu: '1.5'
ram: '7'
env:
# Add your environment variables here
# ENV: 'PROD'
secrets:
# Add your secret ids here you can find it by running `inferless secrets list`
# - 65723205-ce21-4392-a10b-3tf00c58988c
io_schema: true
model_url: https://github.com/guardrails-ai/restricttotopic
provider: GITHUB
20 changes: 20 additions & 0 deletions input_schema.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
INPUT_SCHEMA = {
"text": {
"example": ["Let's talk about Iphones made by Apple"],
"shape": [1],
"datatype": "STRING",
"required": True,
},
"candidate_topics": {
"example": ["Apple Iphone", "Samsung Galaxy"],
"shape": [-1],
"datatype": "STRING",
"required": True,
},
"zero_shot_threshold": {
"example": [0.5],
"shape": [1],
"datatype": "FP32",
"required": True,
},
}
24 changes: 21 additions & 3 deletions validator/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

from dotenv import load_dotenv
from guardrails.validator_base import (
ErrorSpan,
FailResult,
PassResult,
ValidationResult,
Expand Down Expand Up @@ -341,12 +342,29 @@ def validate(
elif topic in self._invalid_topics:
invalid_topics_found.append(topic)

error_spans = []

# Require at least one valid topic and no invalid topics
if invalid_topics_found:
for topic in invalid_topics_found:
error_spans.append(
ErrorSpan(
start=value.find(topic),
end=value.find(topic) + len(topic),
reason=f"Text contains invalid topic: {topic}",
)
)
return FailResult(
error_message=f"Invalid topics found: {invalid_topics_found}"
error_message=f"Invalid topics found: {invalid_topics_found}",
error_spans=error_spans
)
if not valid_topics_found:
return FailResult(error_message="No valid topic was found.")

return FailResult(
error_message="No valid topic was found.",
error_spans=[ErrorSpan(
start=0,
end=len(value),
reason="No valid topic was found."
)]
)
return PassResult()