-
Notifications
You must be signed in to change notification settings - Fork 153
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
WIP Allow Python backend to directly write Numpy arrays to SHM #264
base: r23.05
Are you sure you want to change the base?
Changes from all commits
1789090
a76cc1e
6ed6f52
9504358
e407d0d
e609166
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
FROM asnpdsacr.azurecr.io/public/tritonserver:23.05-tf2-python-py3 | ||
|
||
#RUN DEBIAN_FRONTEND="noninteractive" apt-get update && apt-get -y install tzdata | ||
|
||
RUN apt-get update \ | ||
&& apt-get install -y build-essential \ | ||
gcc \ | ||
g++ \ | ||
gdb \ | ||
clang \ | ||
make \ | ||
ninja-build \ | ||
cmake \ | ||
autoconf \ | ||
automake \ | ||
libtool \ | ||
valgrind \ | ||
locales-all \ | ||
dos2unix \ | ||
rsync \ | ||
tar | ||
RUN apt-get install -y python3-pip python3.10-dev | ||
RUN apt-get install -y rapidjson-dev libarchive-dev zlib1g-dev | ||
RUN apt-get install -y git | ||
RUN pip3 install numpy | ||
RUN rm -r /opt/tritonserver/backends/python | ||
RUN git config --global --add safe.directory '*' | ||
RUN apt-get install -y ssh | ||
|
||
RUN useradd -m user && yes password | passwd user | ||
RUN apt-get install gdbserver |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
�֧�����D�����ٲ�����ٿ� ��������(���������2 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
name: "category_tensorflow_model" | ||
platform: "tensorflow_savedmodel" | ||
max_batch_size: 0 | ||
|
||
parameters: { | ||
key: "TF_SIGNATURE_DEF" | ||
value: { | ||
string_value: "call" | ||
} | ||
} | ||
|
||
input [ | ||
{ | ||
name: "candidatesss" | ||
data_type: TYPE_FP32 | ||
dims: [ -1 , -1] | ||
|
||
} | ||
] | ||
input [ | ||
{ | ||
name: "user_history" | ||
data_type: TYPE_FP32 | ||
dims: [ -1 , -1] | ||
|
||
} | ||
] | ||
output [ | ||
{ | ||
name: "scores" | ||
data_type: TYPE_FP32 | ||
dims: [ -1 ] | ||
} | ||
] | ||
|
||
instance_group [ | ||
{ | ||
count: 2 | ||
kind: KIND_CPU | ||
} | ||
] | ||
|
||
dynamic_batching { } |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
""" | ||
Category model | ||
""" | ||
import time | ||
from typing import cast | ||
|
||
import numpy as np | ||
|
||
try: | ||
import triton_python_backend_utils as pb_utils | ||
except ImportError: | ||
import tests.stub.triton_python_backend_utils | ||
|
||
pb_utils: tests.stub.triton_python_backend_utils = cast( | ||
tests.stub.triton_python_backend_utils, None | ||
) | ||
|
||
|
||
def breakpoint(): | ||
import pydevd_pycharm | ||
|
||
pydevd_pycharm.settrace( | ||
'host.docker.internal', port=5858, stdoutToServer=True, stderrToServer=True | ||
) | ||
|
||
|
||
class TritonPythonModel: | ||
def initialize(self, args): | ||
import triton_python_backend_utils | ||
self.shm = triton_python_backend_utils.shared_memory | ||
self.candidates_cache = np.random.random((500000, 200)).astype(np.float32) | ||
|
||
def execute_request(self, request): | ||
n = int(pb_utils.get_input_tensor_by_name(request, "n").as_numpy()[0]) | ||
candidates = np.random.randint(100000, size=n) | ||
candidate_tensor: pb_utils.Tensor = pb_utils.new_shm_tensor("candidatesss", self.shm, (n, 200), np.float32) | ||
np.take(self.candidates_cache, candidates, axis=0, out=candidate_tensor.as_numpy(), mode='clip') | ||
|
||
context_array = np.random.random((10, 200)).astype(np.float32) | ||
context_tensor = pb_utils.Tensor( | ||
"user_history", | ||
context_array, | ||
) | ||
|
||
inference_response = pb_utils.InferenceRequest( | ||
model_name="category_tensorflow_model", | ||
requested_output_names=["scores"], | ||
inputs=[candidate_tensor, context_tensor], | ||
).exec() | ||
|
||
if inference_response.has_error(): | ||
raise pb_utils.TritonModelException(inference_response.error().message()) | ||
else: | ||
scores = pb_utils.get_output_tensor_by_name(inference_response, "scores") | ||
|
||
out_scores = pb_utils.Tensor("scores", scores.as_numpy()[:400]) | ||
|
||
response = pb_utils.InferenceResponse(output_tensors=[out_scores]) | ||
|
||
return response | ||
|
||
def execute(self, requests): | ||
return [self.execute_request(request) for request in requests] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
name: "test_bls" | ||
backend: "python" | ||
|
||
input [ | ||
{ | ||
name: "n" | ||
data_type: TYPE_INT32 | ||
dims: [ -1] | ||
|
||
} | ||
] | ||
|
||
output [ | ||
{ | ||
name: "scores" | ||
data_type: TYPE_FP32 | ||
dims: [ -1 ] | ||
} | ||
] | ||
|
||
|
||
instance_group [{ kind: KIND_CPU }] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
""" | ||
Category model | ||
""" | ||
import time | ||
from typing import cast | ||
|
||
import numpy as np | ||
|
||
try: | ||
import triton_python_backend_utils as pb_utils | ||
except ImportError: | ||
import tests.stub.triton_python_backend_utils | ||
|
||
pb_utils: tests.stub.triton_python_backend_utils = cast( | ||
tests.stub.triton_python_backend_utils, None | ||
) | ||
|
||
|
||
def breakpoint(): | ||
import pydevd_pycharm | ||
|
||
pydevd_pycharm.settrace( | ||
'host.docker.internal', port=5858, stdoutToServer=True, stderrToServer=True | ||
) | ||
|
||
|
||
class TritonPythonModel: | ||
def initialize(self, args): | ||
import triton_python_backend_utils | ||
self.shm = triton_python_backend_utils.shared_memory | ||
self.candidates_cache = np.random.random((500000, 200)).astype(np.float32) | ||
|
||
def execute_request(self, request): | ||
n = pb_utils.get_input_tensor_by_name(request, "n").as_numpy()[0] | ||
candidates = np.random.randint(100000, size=int(n)) | ||
|
||
context_array = np.random.random((10, 200)).astype(np.float32) | ||
candidates_array = np.take(self.candidates_cache, candidates, axis=0) | ||
|
||
candidate_tensor = pb_utils.Tensor( | ||
"candidatesss", | ||
candidates_array, | ||
) | ||
|
||
context_tensor = pb_utils.Tensor( | ||
"user_history", | ||
context_array, | ||
) | ||
|
||
inference_response = pb_utils.InferenceRequest( | ||
model_name="category_tensorflow_model", | ||
requested_output_names=["scores"], | ||
inputs=[candidate_tensor, context_tensor], | ||
).exec() | ||
|
||
if inference_response.has_error(): | ||
raise pb_utils.TritonModelException(inference_response.error().message()) | ||
else: | ||
scores = pb_utils.get_output_tensor_by_name(inference_response, "scores") | ||
|
||
out_scores = pb_utils.Tensor("scores", scores.as_numpy()[:400]) | ||
|
||
response = pb_utils.InferenceResponse(output_tensors=[out_scores]) | ||
|
||
return response | ||
|
||
def execute(self, requests): | ||
return [self.execute_request(request) for request in requests] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
name: "test_bls_before" | ||
backend: "python" | ||
|
||
input [ | ||
{ | ||
name: "n" | ||
data_type: TYPE_INT32 | ||
dims: [ -1] | ||
|
||
} | ||
] | ||
|
||
output [ | ||
{ | ||
name: "scores" | ||
data_type: TYPE_FP32 | ||
dims: [ -1 ] | ||
} | ||
] | ||
|
||
|
||
instance_group [{ kind: KIND_CPU }] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
""" | ||
Category model | ||
""" | ||
import time | ||
from typing import cast | ||
import timeit | ||
import numpy as np | ||
|
||
try: | ||
import triton_python_backend_utils as pb_utils | ||
except ImportError: | ||
import tests.stub.triton_python_backend_utils | ||
|
||
pb_utils: tests.stub.triton_python_backend_utils = cast( | ||
tests.stub.triton_python_backend_utils, None | ||
) | ||
|
||
|
||
def breakpoint(): | ||
import pydevd_pycharm | ||
|
||
pydevd_pycharm.settrace( | ||
'host.docker.internal', port=5858, stdoutToServer=True, stderrToServer=True | ||
) | ||
|
||
|
||
class TritonPythonModel: | ||
def initialize(self, args): | ||
import triton_python_backend_utils | ||
shm = triton_python_backend_utils.shared_memory | ||
n = 100000 | ||
candidate_tensor = pb_utils.new_shm_tensor("candidatesss", shm, (n, 200), np.float32) # Offset is 68 | ||
buffer = candidate_tensor.as_numpy() | ||
|
||
pb_utils.Logger.log_error(f"buffer - {buffer}, {buffer.dtype}, {buffer.shape}, {buffer.flags}, {buffer.base}") | ||
candidates_cache = np.random.random((500000, 200)).astype(np.float32) | ||
candidates = np.random.randint(100000, size=n) | ||
np_out = np.empty((n, 200), dtype=np.float32) | ||
|
||
r1 = timeit.timeit("buffer[:] = np.take(candidates_cache, candidates, axis=0, mode='clip')", number=100, globals={"candidates_cache":candidates_cache, "candidates":candidates, "buffer": buffer, "np":np})*10 | ||
r2 = timeit.timeit("np.take(candidates_cache, candidates, axis=0, mode='clip', out=buffer)", number=100, globals={"candidates_cache":candidates_cache, "candidates":candidates, "buffer": buffer, "np":np})*10 | ||
r3 = timeit.timeit("r = np.take(candidates_cache, candidates, axis=0, mode='clip')", number=100, globals={"candidates_cache":candidates_cache, "candidates":candidates, "buffer": buffer, "np":np})*10 | ||
r4 = timeit.timeit("np.take(candidates_cache, candidates, axis=0, mode='clip', out=np_out)", number=100, globals={"candidates_cache":candidates_cache, "candidates":candidates, "buffer": buffer, "np":np, "np_out":np_out})*10 | ||
|
||
pb_utils.Logger.log_error(f"Buffer - assignment - {r1}") | ||
pb_utils.Logger.log_error(f"Buffer - output - {r2}") | ||
pb_utils.Logger.log_error(f"Baseline - assignment - {r3}") | ||
pb_utils.Logger.log_error(f"Baseline - np out - {r4}") | ||
pb_utils.Logger.log_error(f"numpy version {np.__version__}") | ||
|
||
|
||
def execute_request(self, request): | ||
pass | ||
|
||
def execute(self, requests): | ||
return [self.execute_request(request) for request in requests] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
name: "test_take" | ||
backend: "python" | ||
|
||
input [ | ||
{ | ||
name: "n" | ||
data_type: TYPE_INT32 | ||
dims: [ -1] | ||
|
||
} | ||
] | ||
|
||
output [ | ||
{ | ||
name: "scores" | ||
data_type: TYPE_FP32 | ||
dims: [ -1 ] | ||
} | ||
] | ||
|
||
|
||
instance_group [{ kind: KIND_CPU }] |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -431,8 +431,12 @@ Stub::StubSetup() | |
py::setattr( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Remove all the changes except the ones in the |
||
python_backend_utils, "MetricFamily", | ||
c_python_backend_utils.attr("MetricFamily")); | ||
py::setattr( | ||
python_backend_utils, "new_shm_tensor", | ||
c_python_backend_utils.attr("new_shm_tensor")); | ||
|
||
c_python_backend_utils.attr("shared_memory") = py::cast(shm_pool_.get()); | ||
python_backend_utils.attr("shared_memory") = py::cast(shm_pool_.get()); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is not needed. |
||
|
||
deserialize_bytes_ = python_backend_utils.attr("deserialize_bytes_tensor"); | ||
serialize_bytes_ = python_backend_utils.attr("serialize_byte_tensor"); | ||
|
@@ -494,6 +498,7 @@ Stub::Initialize(bi::managed_external_buffer::handle_t map_handle) | |
python_backend_utils, "InferenceResponse", | ||
c_python_backend_utils.attr("InferenceResponse")); | ||
c_python_backend_utils.attr("shared_memory") = py::cast(shm_pool_.get()); | ||
python_backend_utils.attr("shared_memory") = py::cast(shm_pool_.get()); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Not required. |
||
|
||
py::object TritonPythonModel = sys.attr("TritonPythonModel"); | ||
deserialize_bytes_ = python_backend_utils.attr("deserialize_bytes_tensor"); | ||
|
@@ -1516,7 +1521,7 @@ PYBIND11_EMBEDDED_MODULE(c_python_backend_utils, module) | |
.def("get_response_sender", &InferRequest::GetResponseSender); | ||
|
||
py::class_<PbTensor, std::shared_ptr<PbTensor>>(module, "Tensor") | ||
.def(py::init(&PbTensor::FromNumpy)) | ||
.def(py::init(&PbTensor::FromNumpy), py::arg("name"), py::arg("numpy_array")) | ||
.def("name", &PbTensor::Name) | ||
// The reference_internal is added to make sure that the NumPy object has | ||
// the same lifetime as the tensor object. This means even when the NumPy | ||
|
@@ -1603,6 +1608,8 @@ PYBIND11_EMBEDDED_MODULE(c_python_backend_utils, module) | |
|
||
py::register_exception<PythonBackendException>( | ||
module, "TritonModelException"); | ||
|
||
module.def("new_shm_tensor", &PbTensor::CreateInSHM, "Creates a new Tensor directly into shared memory"); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we rename this to |
||
} | ||
|
||
extern "C" { | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Remove