-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
rho -> seqlen; refactored AbstractRecurrent:updateOutput
- Loading branch information
Nicholas Leonard
committed
Apr 27, 2017
1 parent
1987c4e
commit d7dd75c
Showing
12 changed files
with
96 additions
and
144 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,15 +1,15 @@ | ||
# Examples | ||
|
||
This directory contains various training scripts. | ||
This directory contains various training scripts. | ||
|
||
Torch blog posts | ||
* The torch.ch blog contains detailed posts about the *rnn* package. | ||
1. [recurrent-visual-attention.lua](recurrent-visual-attention.lua): training script used in [Recurrent Model for Visual Attention](http://torch.ch/blog/2015/09/21/rmva.html). Implements the REINFORCE learning rule to learn an attention mechanism for classifying MNIST digits, sometimes translated. | ||
2. [noise-contrastive-esimate.lua](noise-contrastive-estimate.lua): one of two training scripts used in [Language modeling a billion words](http://torch.ch/blog/2016/07/25/nce.html). Single-GPU script for training recurrent language models on the Google billion words dataset. | ||
3. [multigpu-nce-rnnlm.lua](multigpu-nce-rnnlm.lua) : 4-GPU version of `noise-contrastive-estimate.lua` for training larger multi-GPU models. Two of two training scripts used in the [Language modeling a billion words](http://torch.ch/blog/2016/07/25/nce.html). | ||
|
||
Simple training scripts. | ||
Simple training scripts. | ||
* Showcases the fundamental principles of the package. In chronological order of introduction date. | ||
1. [simple-recurrent-network.lua](simple-recurrent-network.lua): uses the `nn.Recurrent` module to instantiate a Simple RNN. Illustrates the first AbstractRecurrent instance in action. It has since been surpassed by the more flexible `nn.Recursor` and `nn.Recurrence`. The `nn.Recursor` class decorates any module to make it conform to the nn.AbstractRecurrent interface. The `nn.Recurrence` implements the recursive `h[t] <- forward(h[t-1], x[t])`. Together, `nn.Recursor` and `nn.Recurrence` can be used to implement a wide range of experimental recurrent architectures. | ||
1. [simple-recurrent-network.lua](simple-recurrent-network.lua): uses the `nn.LookupRNN` module to instantiate a Simple RNN. Illustrates the first AbstractRecurrent instance in action. It has since been surpassed by the more flexible `nn.Recursor` and `nn.Recurrence`. The `nn.Recursor` class decorates any module to make it conform to the nn.AbstractRecurrent interface. The `nn.Recurrence` implements the recursive `h[t] <- forward(h[t-1], x[t])`. Together, `nn.Recursor` and `nn.Recurrence` can be used to implement a wide range of experimental recurrent architectures. | ||
2. [simple-sequencer-network.lua](simple-sequencer-network.lua): uses the `nn.Sequencer` module to accept a batch of sequences as `input` of size `seqlen x batchsize x ...`. Both tables and tensors are accepted as input and produce the same type of output (table->table, tensor->tensor). The `Sequencer` class abstract away the implementation of back-propagation through time. It also provides a `remember(['neither','both'])` method for triggering what the `Sequencer` remembers between iterations (forward,backward,update). | ||
3. [simple-recurrence-network.lua](simple-recurrence-network.lua): uses the `nn.Recurrence` module to define the h[t] <- sigmoid(h[t-1], x[t]) Simple RNN. Decorates it using `nn.Sequencer` so that an entire batch of sequences (`input`) can forward and backward propagated per update. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.