Skip to content

Commit

Permalink
Compiled knapsack/quadkp_improved_opt
Browse files Browse the repository at this point in the history
  • Loading branch information
FiveMovesAhead committed Jan 16, 2025
1 parent 81c01e5 commit bc67421
Show file tree
Hide file tree
Showing 8 changed files with 1,344 additions and 1 deletion.
3 changes: 2 additions & 1 deletion tig-algorithms/src/knapsack/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,8 @@

// c003_a067

// c003_a068
pub mod quadkp_improved_opt;
pub use quadkp_improved_opt as c003_a068;

// c003_a069

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
/*!
Copyright 2025 VNX
Licensed under the TIG Benchmarker Outbound Game License v2.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy
of the License at
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
*/

use anyhow::Result;
use rand::{rngs::StdRng, Rng, SeedableRng};
use tig_challenges::knapsack::{Challenge, Solution};


fn add_item(
i: usize,
selected_bits: &mut [bool],
total_value: &mut i32,
total_weight: &mut u32,
interaction_gains: &mut [i32],
challenge: &Challenge,
values: &[i32],
weights: &[u32],
) {
let gain = values[i] + interaction_gains[i];
selected_bits[i] = true;
*total_value += gain;
*total_weight += weights[i];
// Mise à jour des interactions
for j in 0..interaction_gains.len() {
interaction_gains[j] += challenge.interaction_values[i][j];
}
}


fn remove_item(
i: usize,
selected_bits: &mut [bool],
total_value: &mut i32,
total_weight: &mut u32,
interaction_gains: &mut [i32],
challenge: &Challenge,
values: &[i32],
weights: &[u32],
) {
let removal_loss = values[i] + interaction_gains[i];
selected_bits[i] = false;
*total_value -= removal_loss;
*total_weight -= weights[i];
for j in 0..interaction_gains.len() {
interaction_gains[j] -= challenge.interaction_values[i][j];
}
}

pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> {
let vertex_count = challenge.weights.len();

let values: Vec<i32> = challenge.values.iter().map(|&v| v as i32).collect();
let weights: Vec<u32> = challenge.weights.clone(); // ou .to_vec()

let mut item_scores: Vec<(usize, f32)> = (0..vertex_count)
.map(|i| {
let interaction_sum: i32 = challenge.interaction_values[i].iter().sum();
let secondary_score = values[i] as f32 / (weights[i].max(1)) as f32;
let combined_score = (values[i] as f32 * 0.75
+ interaction_sum as f32 * 0.15
+ secondary_score * 0.1)
/ (weights[i] as f32).max(1.0);
(i, combined_score)
})
.collect();

item_scores.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap());

let mut selected_bits = vec![false; vertex_count];
let mut interaction_gains = vec![0; vertex_count];

let mut total_value: i32 = 0;
let mut total_weight: u32 = 0;

let mut selected_list = Vec::with_capacity(vertex_count);
let mut unselected_list = Vec::with_capacity(vertex_count);

for &(i, _) in &item_scores {
if total_weight + weights[i] <= challenge.max_weight {
add_item(
i,
&mut selected_bits,
&mut total_value,
&mut total_weight,
&mut interaction_gains,
challenge,
&values,
&weights,
);
selected_list.push(i);
} else {
unselected_list.push(i);
}
}

let mut mutation_rates = vec![0; vertex_count];
for i in 0..vertex_count {
mutation_rates[i] = values[i] + interaction_gains[i];
}

let max_generations = (vertex_count ) / 2;
let mut cooling_schedule = vec![0; vertex_count];
let rng = StdRng::seed_from_u64(challenge.seed[0] as u64);

for _generation in 0..max_generations {
let mut best_gain = 0;
let mut best_swap = None;

for (u_index, &mutant) in unselected_list.iter().enumerate() {
if cooling_schedule[mutant] > 0 {
continue;
}
let mutant_fitness = mutation_rates[mutant];

let extra_weight = (weights[mutant] as i32)
- (challenge.max_weight as i32 - total_weight as i32);

if mutant_fitness < 0 {
continue;
}

for (c_index, &sel) in selected_list.iter().enumerate() {
if cooling_schedule[sel] > 0 {
continue;
}
if extra_weight > 0 && (weights[sel] as i32) < extra_weight {
continue;
}

let interaction_penalty =
(challenge.interaction_values[mutant][sel] as f32 * 0.3) as i32;
let fitness_gain = mutant_fitness - mutation_rates[sel] - interaction_penalty;

if fitness_gain > best_gain {
best_gain = fitness_gain;
best_swap = Some((u_index, c_index));
}
}
}

if let Some((u_index, c_index)) = best_swap {
let added_item = unselected_list[u_index];
let removed_item = selected_list[c_index];

remove_item(
removed_item,
&mut selected_bits,
&mut total_value,
&mut total_weight,
&mut interaction_gains,
challenge,
&values,
&weights,
);
add_item(
added_item,
&mut selected_bits,
&mut total_value,
&mut total_weight,
&mut interaction_gains,
challenge,
&values,
&weights,
);

selected_list.swap_remove(c_index);
unselected_list.swap_remove(u_index);
selected_list.push(added_item);
unselected_list.push(removed_item);

for i in 0..vertex_count {
mutation_rates[i] = values[i] + interaction_gains[i];
}

if total_weight > challenge.max_weight {
continue;
}

cooling_schedule[added_item] = 3;
cooling_schedule[removed_item] = 3;
}

if total_value >= challenge.min_value as i32 {
let final_items: Vec<usize> = selected_list.clone();
return Ok(Some(Solution { items: final_items }));
}

for c in cooling_schedule.iter_mut() {
*c = if *c > 0 { *c - 1 } else { 0 };
}

if total_value as u32 > (challenge.min_value * 9 / 10) {
let high_potential_items: Vec<usize> = unselected_list
.iter()
.copied()
.filter(|&i| values[i] > (challenge.min_value as i32 / 4))
.collect();

for &item in high_potential_items.iter().take(2) {
if total_weight + weights[item] <= challenge.max_weight {
unselected_list.retain(|&x| x != item);

add_item(
item,
&mut selected_bits,
&mut total_value,
&mut total_weight,
&mut interaction_gains,
challenge,
&values,
&weights,
);
selected_list.push(item);

for i in 0..vertex_count {
mutation_rates[i] = values[i] + interaction_gains[i];
}

if total_value >= challenge.min_value as i32 {
let final_items: Vec<usize> = selected_list.clone();
return Ok(Some(Solution { items: final_items }));
}
}
}
}
}

if total_value as u32 >= challenge.min_value && total_weight <= challenge.max_weight {
let final_items: Vec<usize> = selected_list.clone();
Ok(Some(Solution { items: final_items }))
} else {
Ok(None)
}
}

#[cfg(feature = "cuda")]
mod gpu_optimisation {
use super::*;
use cudarc::driver::*;
use std::{collections::HashMap, sync::Arc};
use tig_challenges::CudaKernel;

pub const KERNEL: Option<CudaKernel> = None;

pub fn cuda_solve_challenge(
challenge: &Challenge,
dev: &Arc<CudaDevice>,
mut funcs: HashMap<&'static str, CudaFunction>,
) -> anyhow::Result<Option<Solution>> {
solve_challenge(challenge)
}
}
#[cfg(feature = "cuda")]
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL};
Loading

0 comments on commit bc67421

Please sign in to comment.