Skip to content

Commit

Permalink
Compiled satisfiability/sat_adaptive
Browse files Browse the repository at this point in the history
  • Loading branch information
FiveMovesAhead committed Jan 16, 2025
1 parent 81c01e5 commit 72e4cb5
Show file tree
Hide file tree
Showing 9 changed files with 1,583 additions and 25 deletions.
3 changes: 2 additions & 1 deletion tig-algorithms/src/satisfiability/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,8 @@

// c001_a041

// c001_a042
pub mod sat_adaptive;
pub use sat_adaptive as c001_a042;

// c001_a043

Expand Down
315 changes: 315 additions & 0 deletions tig-algorithms/src/satisfiability/sat_adaptive/benchmarker_outbound.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,315 @@
/*!
Copyright 2024 syebastian
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy
of the License at
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
*/

use rand::{rngs::{SmallRng, StdRng}, Rng, SeedableRng};
use std::collections::HashMap;
use tig_challenges::satisfiability::*;

pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result<Option<Solution>> {
let mut rng = SmallRng::seed_from_u64(u64::from_le_bytes(challenge.seed[..8].try_into().unwrap()) as u64);

let mut p_single = vec![false; challenge.difficulty.num_variables];
let mut n_single = vec![false; challenge.difficulty.num_variables];

let mut clauses_ = challenge.clauses.clone();
let mut clauses: Vec<Vec<i32>> = Vec::with_capacity(clauses_.len());

let mut rounds = 0;

let mut dead = false;

while !(dead) {
let mut done = true;
for c in &clauses_ {
let mut c_: Vec<i32> = Vec::with_capacity(c.len()); // Preallocate with capacity
let mut skip = false;
for (i, l) in c.iter().enumerate() {
if (p_single[(l.abs() - 1) as usize] && *l > 0)
|| (n_single[(l.abs() - 1) as usize] && *l < 0)
|| c[(i + 1)..].contains(&-l)
{
skip = true;
break;
} else if p_single[(l.abs() - 1) as usize]
|| n_single[(l.abs() - 1) as usize]
|| c[(i + 1)..].contains(&l)
{
done = false;
continue;
} else {
c_.push(*l);
}
}
if skip {
done = false;
continue;
};
match c_[..] {
[l] => {
done = false;
if l > 0 {
if n_single[(l.abs() - 1) as usize] {
dead = true;
break;
} else {
p_single[(l.abs() - 1) as usize] = true;
}
} else {
if p_single[(l.abs() - 1) as usize] {
dead = true;
break;
} else {
n_single[(l.abs() - 1) as usize] = true;
}
}
}
[] => {
dead = true;
break;
}
_ => {
clauses.push(c_);
}
}
}
if done {
break;
} else {
clauses_ = clauses;
clauses = Vec::with_capacity(clauses_.len());
}
}

if dead {
return Ok(None);
}

let num_variables = challenge.difficulty.num_variables;
let num_clauses = clauses.len();

let mut p_clauses: Vec<Vec<usize>> = vec![Vec::new(); num_variables];
let mut n_clauses: Vec<Vec<usize>> = vec![Vec::new(); num_variables];

// Preallocate capacity for p_clauses and n_clauses
for c in &clauses {
for &l in c {
let var = (l.abs() - 1) as usize;
if l > 0 {
if p_clauses[var].capacity() == 0 {
p_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1);
}
} else {
if n_clauses[var].capacity() == 0 {
n_clauses[var] = Vec::with_capacity(clauses.len() / num_variables + 1);
}
}
}
}

for (i, &ref c) in clauses.iter().enumerate() {
for &l in c {
let var = (l.abs() - 1) as usize;
if l > 0 {
p_clauses[var].push(i);
} else {
n_clauses[var].push(i);
}
}
}

let mut variables = vec![false; num_variables];
for v in 0..num_variables {
let num_p = p_clauses[v].len();
let num_n = n_clauses[v].len();

let nad = 1.28;
let mut vad = nad + 1.0;
if num_n > 0 {
vad = num_p as f32 / num_n as f32;
}

if vad <= nad {
variables[v] = false;
} else {
let prob = num_p as f64 / (num_p + num_n).max(1) as f64;
variables[v] = rng.gen_bool(prob)
}
}

let mut num_good_so_far: Vec<u8> = vec![0; num_clauses];
for (i, &ref c) in clauses.iter().enumerate() {
for &l in c {
let var = (l.abs() - 1) as usize;
if l > 0 && variables[var] {
num_good_so_far[i] += 1
} else if l < 0 && !variables[var] {
num_good_so_far[i] += 1
}
}
}


let mut residual_ = Vec::with_capacity(num_clauses);
let mut residual_indices = vec![None; num_clauses];

for (i, &num_good) in num_good_so_far.iter().enumerate() {
if num_good == 0 {
residual_.push(i);
residual_indices[i] = Some(residual_.len() - 1);
}
}

let base_prob = 0.52;
let mut current_prob = base_prob;
let check_interval = 50;
let mut last_check_residual = residual_.len();

let clauses_ratio = challenge.difficulty.clauses_to_variables_percent as f64;
let num_vars = challenge.difficulty.num_variables as f64;
let max_fuel = 2000000000.0;
let base_fuel = (2000.0 + 40.0 * clauses_ratio) * num_vars;
let flip_fuel = 350.0 + 0.9 * clauses_ratio;
let max_num_rounds = ((max_fuel - base_fuel) / flip_fuel) as usize;
loop {
if !residual_.is_empty() {

let rand_val = rng.gen::<usize>();

let i = residual_[rand_val % residual_.len()];
let mut min_sad = clauses.len();
let mut v_min_sad = usize::MAX;
let c = &mut clauses[i];

if c.len() > 1 {
let random_index = rand_val % c.len();
c.swap(0, random_index);
}
for &l in c.iter() {
let abs_l = l.abs() as usize - 1;
let clauses_to_check = if variables[abs_l] { &p_clauses[abs_l] } else { &n_clauses[abs_l] };

let mut sad = 0;
for &c in clauses_to_check {
if num_good_so_far[c] == 1 {
sad += 1;
}
}

if sad < min_sad {
min_sad = sad;
v_min_sad = abs_l;
}
}

if rounds % check_interval == 0 {
let progress = last_check_residual as i64 - residual_.len() as i64;
let progress_ratio = progress as f64 / last_check_residual as f64;

let progress_threshold = 0.2 + 0.1 * f64::min(1.0, (clauses_ratio - 410.0) / 15.0);

if progress <= 0 {
let prob_adjustment = 0.025 * (-progress as f64 / last_check_residual as f64).min(1.0);
current_prob = (current_prob + prob_adjustment).min(0.9);
} else if progress_ratio > progress_threshold {
current_prob = base_prob;
} else {
current_prob = current_prob * 0.8 + base_prob * 0.2;
}

last_check_residual = residual_.len();
}

let v = if min_sad == 0 {
v_min_sad
} else if rng.gen_bool(current_prob) {
c[0].abs() as usize - 1
} else {
v_min_sad
};

if variables[v] {
for &c in &n_clauses[v] {
num_good_so_far[c] += 1;
if num_good_so_far[c] == 1 {
let i = residual_indices[c].take().unwrap();
let last = residual_.pop().unwrap();
if i < residual_.len() {
residual_[i] = last;
residual_indices[last] = Some(i);
}
}
}
for &c in &p_clauses[v] {
if num_good_so_far[c] == 1 {
residual_.push(c);
residual_indices[c] = Some(residual_.len() - 1);
}
num_good_so_far[c] -= 1;
}
} else {
for &c in &n_clauses[v] {
if num_good_so_far[c] == 1 {
residual_.push(c);
residual_indices[c] = Some(residual_.len() - 1);
}
num_good_so_far[c] -= 1;
}

for &c in &p_clauses[v] {
num_good_so_far[c] += 1;
if num_good_so_far[c] == 1 {
let i = residual_indices[c].take().unwrap();
let last = residual_.pop().unwrap();
if i < residual_.len() {
residual_[i] = last;
residual_indices[last] = Some(i);
}
}
}
}

variables[v] = !variables[v];
} else {
break;
}
rounds += 1;
if rounds >= max_num_rounds {
return Ok(None);
}
}
return Ok(Some(Solution { variables }));
}

#[cfg(feature = "cuda")]
mod gpu_optimisation {
use super::*;
use cudarc::driver::*;
use std::{collections::HashMap, sync::Arc};
use tig_challenges::CudaKernel;

// set KERNEL to None if algorithm only has a CPU implementation
pub const KERNEL: Option<CudaKernel> = None;

// Important! your GPU and CPU version of the algorithm should return the same result
pub fn cuda_solve_challenge(
challenge: &Challenge,
dev: &Arc<CudaDevice>,
mut funcs: HashMap<&'static str, CudaFunction>,
) -> anyhow::Result<Option<Solution>> {
solve_challenge(challenge)
}
}
#[cfg(feature = "cuda")]
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL};
Loading

0 comments on commit 72e4cb5

Please sign in to comment.