-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
81c01e5
commit 68e8889
Showing
9 changed files
with
593 additions
and
25 deletions.
There are no files selected for viewing
117 changes: 117 additions & 0 deletions
117
tig-algorithms/src/knapsack/better_knapp/benchmarker_outbound.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
/*! | ||
Copyright 2024 M H | ||
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
use std::collections::HashMap; | ||
use tig_challenges::knapsack::*; | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result<Option<Solution>> { | ||
let max_weight = challenge.max_weight as usize; | ||
let min_value = challenge.min_value as usize; | ||
let num_items = challenge.difficulty.num_items; | ||
|
||
let weights: Vec<usize> = challenge | ||
.weights | ||
.iter() | ||
.map(|weight| *weight as usize) | ||
.collect(); | ||
let values: Vec<usize> = challenge | ||
.values | ||
.iter() | ||
.map(|value| *value as usize) | ||
.collect(); | ||
|
||
// Helper function to compute knapsack solution using memoization (Top-down DP) | ||
fn knapsack( | ||
weights: &[usize], | ||
values: &[usize], | ||
max_weight: usize, | ||
n: usize, | ||
memo: &mut HashMap<(usize, usize), usize>, | ||
) -> usize { | ||
if n == 0 || max_weight == 0 { | ||
return 0; | ||
} | ||
|
||
if let Some(&result) = memo.get(&(n, max_weight)) { | ||
return result; | ||
} | ||
|
||
let result = if weights[n - 1] > max_weight { | ||
knapsack(weights, values, max_weight, n - 1, memo) | ||
} else { | ||
let included = | ||
values[n - 1] + knapsack(weights, values, max_weight - weights[n - 1], n - 1, memo); | ||
let excluded = knapsack(weights, values, max_weight, n - 1, memo); | ||
included.max(excluded) | ||
}; | ||
|
||
memo.insert((n, max_weight), result); | ||
result | ||
} | ||
|
||
let mut memo = HashMap::new(); | ||
let max_value = knapsack(&weights, &values, max_weight, num_items, &mut memo); | ||
|
||
if max_value < min_value { | ||
return Ok(None); | ||
} | ||
|
||
// Reconstructing the solution | ||
let mut items = Vec::with_capacity(num_items); | ||
let mut remaining_weight = max_weight; | ||
let mut total_value = max_value; | ||
|
||
for i in (1..=num_items).rev() { | ||
if remaining_weight == 0 { | ||
break; | ||
} | ||
|
||
if memo.get(&(i, remaining_weight)) == Some(&total_value) { | ||
continue; | ||
} else { | ||
items.push(i - 1); | ||
remaining_weight -= weights[i - 1]; | ||
total_value -= values[i - 1]; | ||
} | ||
} | ||
|
||
if total_value >= min_value { | ||
Ok(Some(Solution { items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
/*! | ||
Copyright 2024 M H | ||
Licensed under the TIG Commercial License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
use std::collections::HashMap; | ||
use tig_challenges::knapsack::*; | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result<Option<Solution>> { | ||
let max_weight = challenge.max_weight as usize; | ||
let min_value = challenge.min_value as usize; | ||
let num_items = challenge.difficulty.num_items; | ||
|
||
let weights: Vec<usize> = challenge | ||
.weights | ||
.iter() | ||
.map(|weight| *weight as usize) | ||
.collect(); | ||
let values: Vec<usize> = challenge | ||
.values | ||
.iter() | ||
.map(|value| *value as usize) | ||
.collect(); | ||
|
||
// Helper function to compute knapsack solution using memoization (Top-down DP) | ||
fn knapsack( | ||
weights: &[usize], | ||
values: &[usize], | ||
max_weight: usize, | ||
n: usize, | ||
memo: &mut HashMap<(usize, usize), usize>, | ||
) -> usize { | ||
if n == 0 || max_weight == 0 { | ||
return 0; | ||
} | ||
|
||
if let Some(&result) = memo.get(&(n, max_weight)) { | ||
return result; | ||
} | ||
|
||
let result = if weights[n - 1] > max_weight { | ||
knapsack(weights, values, max_weight, n - 1, memo) | ||
} else { | ||
let included = | ||
values[n - 1] + knapsack(weights, values, max_weight - weights[n - 1], n - 1, memo); | ||
let excluded = knapsack(weights, values, max_weight, n - 1, memo); | ||
included.max(excluded) | ||
}; | ||
|
||
memo.insert((n, max_weight), result); | ||
result | ||
} | ||
|
||
let mut memo = HashMap::new(); | ||
let max_value = knapsack(&weights, &values, max_weight, num_items, &mut memo); | ||
|
||
if max_value < min_value { | ||
return Ok(None); | ||
} | ||
|
||
// Reconstructing the solution | ||
let mut items = Vec::with_capacity(num_items); | ||
let mut remaining_weight = max_weight; | ||
let mut total_value = max_value; | ||
|
||
for i in (1..=num_items).rev() { | ||
if remaining_weight == 0 { | ||
break; | ||
} | ||
|
||
if memo.get(&(i, remaining_weight)) == Some(&total_value) { | ||
continue; | ||
} else { | ||
items.push(i - 1); | ||
remaining_weight -= weights[i - 1]; | ||
total_value -= values[i - 1]; | ||
} | ||
} | ||
|
||
if total_value >= min_value { | ||
Ok(Some(Solution { items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
/*! | ||
Copyright 2024 M H | ||
Licensed under the TIG Inbound Game License v1.0 or (at your option) any later | ||
version (the "License"); you may not use this file except in compliance with the | ||
License. You may obtain a copy of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
use std::collections::HashMap; | ||
use tig_challenges::knapsack::*; | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result<Option<Solution>> { | ||
let max_weight = challenge.max_weight as usize; | ||
let min_value = challenge.min_value as usize; | ||
let num_items = challenge.difficulty.num_items; | ||
|
||
let weights: Vec<usize> = challenge | ||
.weights | ||
.iter() | ||
.map(|weight| *weight as usize) | ||
.collect(); | ||
let values: Vec<usize> = challenge | ||
.values | ||
.iter() | ||
.map(|value| *value as usize) | ||
.collect(); | ||
|
||
// Helper function to compute knapsack solution using memoization (Top-down DP) | ||
fn knapsack( | ||
weights: &[usize], | ||
values: &[usize], | ||
max_weight: usize, | ||
n: usize, | ||
memo: &mut HashMap<(usize, usize), usize>, | ||
) -> usize { | ||
if n == 0 || max_weight == 0 { | ||
return 0; | ||
} | ||
|
||
if let Some(&result) = memo.get(&(n, max_weight)) { | ||
return result; | ||
} | ||
|
||
let result = if weights[n - 1] > max_weight { | ||
knapsack(weights, values, max_weight, n - 1, memo) | ||
} else { | ||
let included = | ||
values[n - 1] + knapsack(weights, values, max_weight - weights[n - 1], n - 1, memo); | ||
let excluded = knapsack(weights, values, max_weight, n - 1, memo); | ||
included.max(excluded) | ||
}; | ||
|
||
memo.insert((n, max_weight), result); | ||
result | ||
} | ||
|
||
let mut memo = HashMap::new(); | ||
let max_value = knapsack(&weights, &values, max_weight, num_items, &mut memo); | ||
|
||
if max_value < min_value { | ||
return Ok(None); | ||
} | ||
|
||
// Reconstructing the solution | ||
let mut items = Vec::with_capacity(num_items); | ||
let mut remaining_weight = max_weight; | ||
let mut total_value = max_value; | ||
|
||
for i in (1..=num_items).rev() { | ||
if remaining_weight == 0 { | ||
break; | ||
} | ||
|
||
if memo.get(&(i, remaining_weight)) == Some(&total_value) { | ||
continue; | ||
} else { | ||
items.push(i - 1); | ||
remaining_weight -= weights[i - 1]; | ||
total_value -= values[i - 1]; | ||
} | ||
} | ||
|
||
if total_value >= min_value { | ||
Ok(Some(Solution { items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
Oops, something went wrong.