Skip to content

Commit

Permalink
"Player 0x71634ea9ea3878cfaddbe9be27669f86a90b2652 submitted 'walk_sa…
Browse files Browse the repository at this point in the history
…t_adapt_tabu' for challenge satisfiability"
  • Loading branch information
0x71634ea9ea3878cfaddbe9be27669f86a90b2652 committed Jun 8, 2024
1 parent fffad88 commit 6802c10
Show file tree
Hide file tree
Showing 7 changed files with 728 additions and 1 deletion.
2 changes: 1 addition & 1 deletion tig-algorithms/src/satisfiability/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

// c001_a009

// c001_a010
pub mod walk_sat_adapt_tabu; // c001_a010

// c001_a011

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
/*!
Copyright 2024 Louis Silva
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy
of the License at
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
*/

// TIG's UI uses the pattern `tig_challenges::<challenge_name>` to automatically detect your algorithm's challenge
use anyhow::Result;
use rand::{Rng, SeedableRng};
use rand::rngs::StdRng;
use rand::seq::IteratorRandom;
use std::collections::{HashSet, VecDeque};
use tig_challenges::satisfiability::*;

pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> {
let mut rng = StdRng::seed_from_u64(challenge.seed as u64);
let num_variables = challenge.difficulty.num_variables;
let max_flips = 1000;
let initial_noise: f64 = 0.3;
let mut noise: f64 = initial_noise;
let mut variables: Vec<bool> = (0..num_variables).map(|_| rng.gen()).collect();
let mut best_solution: Option<Solution> = None;
let mut best_unsatisfied = usize::MAX;
let mut clause_weights: Vec<usize> = vec![1; challenge.clauses.len()];
let mut unsatisfied_clauses: HashSet<usize> = challenge.clauses.iter()
.enumerate()
.filter_map(|(i, clause)| if !clause_satisfied(clause, &variables) { Some(i) } else { None })
.collect();
let mut tabu_list: VecDeque<usize> = VecDeque::with_capacity(10);
let mut tabu_tenure = 10;

for flip in 0..max_flips {
let num_unsatisfied = unsatisfied_clauses.len();

// Update the best solution found so far
if num_unsatisfied < best_unsatisfied {
best_unsatisfied = num_unsatisfied;
best_solution = Some(Solution { variables: variables.clone() });

if num_unsatisfied == 0 {
return Ok(best_solution);
}
}

// Adaptive noise adjustment based on progress
if num_unsatisfied == best_unsatisfied {
noise = (noise + 0.005).min(1.0);
} else {
noise = (noise - 0.01).max(0.1);
}

// Dynamic adjustment of tabu tenure
tabu_tenure = (num_unsatisfied as f64 / best_unsatisfied as f64 * 10.0).max(5.0).min(20.0) as usize;

// Choose an unsatisfied clause
if let Some(&clause_idx) = unsatisfied_clauses.iter().choose(&mut rng) {
let clause = &challenge.clauses[clause_idx];

// Flip a variable with a heuristic
if rng.gen::<f64>() < noise {
// Random flip
if let Some(&literal) = clause.iter().choose(&mut rng) {
let var_idx = literal.abs() as usize - 1;
if !tabu_list.contains(&var_idx) {
variables[var_idx] = !variables[var_idx];
update_unsatisfied_clauses(&mut unsatisfied_clauses, &challenge.clauses, var_idx, &variables);
tabu_list.push_back(var_idx);
if tabu_list.len() > tabu_tenure {
tabu_list.pop_front();
}
}
}
} else {
// Greedy flip
let mut best_var = None;
let mut best_reduction = usize::MAX;
for &literal in clause {
let var_idx = literal.abs() as usize - 1;
if tabu_list.contains(&var_idx) {
continue;
}
variables[var_idx] = !variables[var_idx]; // Tentative flip
let reduction = challenge.clauses.iter().enumerate()
.filter(|(i, clause)| !clause_satisfied(clause, &variables) && clause_weights[*i] > 0)
.count();
variables[var_idx] = !variables[var_idx]; // Revert flip

if reduction < best_reduction {
best_reduction = reduction;
best_var = Some(var_idx);
}
}

if let Some(var_idx) = best_var {
variables[var_idx] = !variables[var_idx];
update_unsatisfied_clauses(&mut unsatisfied_clauses, &challenge.clauses, var_idx, &variables);
tabu_list.push_back(var_idx);
if tabu_list.len() > tabu_tenure {
tabu_list.pop_front();
}
}
}

// Adaptive weight update for unsatisfied clauses
for &clause_idx in &unsatisfied_clauses {
clause_weights[clause_idx] += 1 + (best_unsatisfied.saturating_sub(num_unsatisfied)) / best_unsatisfied;
}
}
}

Ok(best_solution)
}

fn clause_satisfied(clause: &[i32], variables: &[bool]) -> bool {
clause.iter().any(|&literal| {
let var_idx = literal.abs() as usize - 1;
(literal > 0 && variables[var_idx]) || (literal < 0 && !variables[var_idx])
})
}

fn update_unsatisfied_clauses(
unsatisfied_clauses: &mut HashSet<usize>,
clauses: &[Vec<i32>],
flipped_var: usize,
variables: &[bool]
) {
for (i, clause) in clauses.iter().enumerate() {
if clause.iter().any(|&literal| literal.abs() as usize - 1 == flipped_var) {
if clause_satisfied(clause, variables) {
unsatisfied_clauses.remove(&i);
} else {
unsatisfied_clauses.insert(i);
}
}
}
}
145 changes: 145 additions & 0 deletions tig-algorithms/src/satisfiability/walk_sat_adapt_tabu/commercial.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
/*!
Copyright 2024 Louis Silva
Licensed under the TIG Commercial License v1.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy
of the License at
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
*/

// TIG's UI uses the pattern `tig_challenges::<challenge_name>` to automatically detect your algorithm's challenge
use anyhow::Result;
use rand::{Rng, SeedableRng};
use rand::rngs::StdRng;
use rand::seq::IteratorRandom;
use std::collections::{HashSet, VecDeque};
use tig_challenges::satisfiability::*;

pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> {
let mut rng = StdRng::seed_from_u64(challenge.seed as u64);
let num_variables = challenge.difficulty.num_variables;
let max_flips = 1000;
let initial_noise: f64 = 0.3;
let mut noise: f64 = initial_noise;
let mut variables: Vec<bool> = (0..num_variables).map(|_| rng.gen()).collect();
let mut best_solution: Option<Solution> = None;
let mut best_unsatisfied = usize::MAX;
let mut clause_weights: Vec<usize> = vec![1; challenge.clauses.len()];
let mut unsatisfied_clauses: HashSet<usize> = challenge.clauses.iter()
.enumerate()
.filter_map(|(i, clause)| if !clause_satisfied(clause, &variables) { Some(i) } else { None })
.collect();
let mut tabu_list: VecDeque<usize> = VecDeque::with_capacity(10);
let mut tabu_tenure = 10;

for flip in 0..max_flips {
let num_unsatisfied = unsatisfied_clauses.len();

// Update the best solution found so far
if num_unsatisfied < best_unsatisfied {
best_unsatisfied = num_unsatisfied;
best_solution = Some(Solution { variables: variables.clone() });

if num_unsatisfied == 0 {
return Ok(best_solution);
}
}

// Adaptive noise adjustment based on progress
if num_unsatisfied == best_unsatisfied {
noise = (noise + 0.005).min(1.0);
} else {
noise = (noise - 0.01).max(0.1);
}

// Dynamic adjustment of tabu tenure
tabu_tenure = (num_unsatisfied as f64 / best_unsatisfied as f64 * 10.0).max(5.0).min(20.0) as usize;

// Choose an unsatisfied clause
if let Some(&clause_idx) = unsatisfied_clauses.iter().choose(&mut rng) {
let clause = &challenge.clauses[clause_idx];

// Flip a variable with a heuristic
if rng.gen::<f64>() < noise {
// Random flip
if let Some(&literal) = clause.iter().choose(&mut rng) {
let var_idx = literal.abs() as usize - 1;
if !tabu_list.contains(&var_idx) {
variables[var_idx] = !variables[var_idx];
update_unsatisfied_clauses(&mut unsatisfied_clauses, &challenge.clauses, var_idx, &variables);
tabu_list.push_back(var_idx);
if tabu_list.len() > tabu_tenure {
tabu_list.pop_front();
}
}
}
} else {
// Greedy flip
let mut best_var = None;
let mut best_reduction = usize::MAX;
for &literal in clause {
let var_idx = literal.abs() as usize - 1;
if tabu_list.contains(&var_idx) {
continue;
}
variables[var_idx] = !variables[var_idx]; // Tentative flip
let reduction = challenge.clauses.iter().enumerate()
.filter(|(i, clause)| !clause_satisfied(clause, &variables) && clause_weights[*i] > 0)
.count();
variables[var_idx] = !variables[var_idx]; // Revert flip

if reduction < best_reduction {
best_reduction = reduction;
best_var = Some(var_idx);
}
}

if let Some(var_idx) = best_var {
variables[var_idx] = !variables[var_idx];
update_unsatisfied_clauses(&mut unsatisfied_clauses, &challenge.clauses, var_idx, &variables);
tabu_list.push_back(var_idx);
if tabu_list.len() > tabu_tenure {
tabu_list.pop_front();
}
}
}

// Adaptive weight update for unsatisfied clauses
for &clause_idx in &unsatisfied_clauses {
clause_weights[clause_idx] += 1 + (best_unsatisfied.saturating_sub(num_unsatisfied)) / best_unsatisfied;
}
}
}

Ok(best_solution)
}

fn clause_satisfied(clause: &[i32], variables: &[bool]) -> bool {
clause.iter().any(|&literal| {
let var_idx = literal.abs() as usize - 1;
(literal > 0 && variables[var_idx]) || (literal < 0 && !variables[var_idx])
})
}

fn update_unsatisfied_clauses(
unsatisfied_clauses: &mut HashSet<usize>,
clauses: &[Vec<i32>],
flipped_var: usize,
variables: &[bool]
) {
for (i, clause) in clauses.iter().enumerate() {
if clause.iter().any(|&literal| literal.abs() as usize - 1 == flipped_var) {
if clause_satisfied(clause, variables) {
unsatisfied_clauses.remove(&i);
} else {
unsatisfied_clauses.insert(i);
}
}
}
}
Loading

0 comments on commit 6802c10

Please sign in to comment.