-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
81c01e5
commit 3706270
Showing
9 changed files
with
708 additions
and
25 deletions.
There are no files selected for viewing
140 changes: 140 additions & 0 deletions
140
tig-algorithms/src/knapsack/knapsplorify/benchmarker_outbound.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
/*! | ||
Copyright 2014 stanlocht | ||
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
// TIG's UI uses the pattern `tig_challenges::<challenge_name>` to automatically detect your algorithm's challenge | ||
use anyhow::{anyhow, Result}; | ||
use tig_challenges::knapsack::{Challenge, Solution}; | ||
|
||
#[derive(Clone, PartialEq)] | ||
struct Node { | ||
level: usize, | ||
profit: usize, | ||
weight: usize, | ||
bound: f64, | ||
items: Vec<usize>, | ||
} | ||
|
||
impl Node { | ||
fn new(level: usize, profit: usize, weight: usize, bound: f64, items: Vec<usize>) -> Self { | ||
Self { level, profit, weight, bound, items } | ||
} | ||
} | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let maximum_weight_capacity = challenge.max_weight as usize; | ||
let minimum_value_required = challenge.min_value as usize; | ||
let number_of_items = challenge.difficulty.num_items; | ||
|
||
let item_weights: Vec<usize> = challenge.weights.iter().map(|&weight| weight as usize).collect(); | ||
let item_values: Vec<usize> = challenge.values.iter().map(|&value| value as usize).collect(); | ||
|
||
let mut items_sorted_by_value_density: Vec<(usize, f64)> = (0..number_of_items) | ||
.map(|item_index| (item_index, item_values[item_index] as f64 / item_weights[item_index] as f64)) | ||
.collect(); | ||
items_sorted_by_value_density.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); | ||
|
||
fn calculate_bound(node: &Node, maximum_weight_capacity: usize, items_sorted_by_value_density: &[(usize, f64)], item_weights: &[usize], item_values: &[usize]) -> f64 { | ||
if node.weight >= maximum_weight_capacity { | ||
return 0.0; | ||
} | ||
|
||
let mut bound = node.profit as f64; | ||
let mut total_weight = node.weight; | ||
let mut j = node.level; | ||
|
||
while j < items_sorted_by_value_density.len() && total_weight + item_weights[items_sorted_by_value_density[j].0] <= maximum_weight_capacity { | ||
total_weight += item_weights[items_sorted_by_value_density[j].0]; | ||
bound += item_values[items_sorted_by_value_density[j].0] as f64; | ||
j += 1; | ||
} | ||
|
||
if j < items_sorted_by_value_density.len() { | ||
bound += (maximum_weight_capacity - total_weight) as f64 * items_sorted_by_value_density[j].1; | ||
} | ||
|
||
bound | ||
} | ||
|
||
let mut max_profit = 0; | ||
let mut best_items = Vec::new(); | ||
let mut nodes = vec![Node::new(0, 0, 0, 0.0, Vec::new())]; | ||
nodes[0].bound = calculate_bound(&nodes[0], maximum_weight_capacity, &items_sorted_by_value_density, &item_weights, &item_values); | ||
|
||
while let Some(node) = nodes.pop() { | ||
if node.bound > max_profit as f64 && node.level < number_of_items { | ||
let next_level = node.level + 1; | ||
|
||
// Explore the node including the next item | ||
let next_item_index = items_sorted_by_value_density[node.level].0; | ||
let next_weight = node.weight + item_weights[next_item_index]; | ||
let next_profit = node.profit + item_values[next_item_index]; | ||
|
||
let mut include_items = node.items.clone(); | ||
include_items.push(next_item_index); | ||
|
||
if next_weight <= maximum_weight_capacity && next_profit > max_profit { | ||
max_profit = next_profit; | ||
best_items = include_items.clone(); | ||
} | ||
|
||
let mut include_node = Node::new(next_level, next_profit, next_weight, 0.0, include_items); | ||
include_node.bound = calculate_bound(&include_node, maximum_weight_capacity, &items_sorted_by_value_density, &item_weights, &item_values); | ||
|
||
if include_node.bound > max_profit as f64 { | ||
let pos = nodes.binary_search_by(|n| n.bound.partial_cmp(&include_node.bound).unwrap()).unwrap_or_else(|e| e); | ||
nodes.insert(pos, include_node); | ||
} | ||
|
||
// Explore the node excluding the next item | ||
let mut exclude_node = Node::new(next_level, node.profit, node.weight, 0.0, node.items.clone()); | ||
exclude_node.bound = calculate_bound(&exclude_node, maximum_weight_capacity, &items_sorted_by_value_density, &item_weights, &item_values); | ||
|
||
if exclude_node.bound > max_profit as f64 { | ||
let pos = nodes.binary_search_by(|n| n.bound.partial_cmp(&exclude_node.bound).unwrap()).unwrap_or_else(|e| e); | ||
nodes.insert(pos, exclude_node); | ||
} | ||
} | ||
} | ||
|
||
if max_profit >= minimum_value_required { | ||
Ok(Some(Solution { items: best_items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
// Important! Do not include any tests in this file, it will result in your submission being rejected | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
/*! | ||
Copyright 2014 stanlocht | ||
Licensed under the TIG Commercial License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
// TIG's UI uses the pattern `tig_challenges::<challenge_name>` to automatically detect your algorithm's challenge | ||
use anyhow::{anyhow, Result}; | ||
use tig_challenges::knapsack::{Challenge, Solution}; | ||
|
||
#[derive(Clone, PartialEq)] | ||
struct Node { | ||
level: usize, | ||
profit: usize, | ||
weight: usize, | ||
bound: f64, | ||
items: Vec<usize>, | ||
} | ||
|
||
impl Node { | ||
fn new(level: usize, profit: usize, weight: usize, bound: f64, items: Vec<usize>) -> Self { | ||
Self { level, profit, weight, bound, items } | ||
} | ||
} | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let maximum_weight_capacity = challenge.max_weight as usize; | ||
let minimum_value_required = challenge.min_value as usize; | ||
let number_of_items = challenge.difficulty.num_items; | ||
|
||
let item_weights: Vec<usize> = challenge.weights.iter().map(|&weight| weight as usize).collect(); | ||
let item_values: Vec<usize> = challenge.values.iter().map(|&value| value as usize).collect(); | ||
|
||
let mut items_sorted_by_value_density: Vec<(usize, f64)> = (0..number_of_items) | ||
.map(|item_index| (item_index, item_values[item_index] as f64 / item_weights[item_index] as f64)) | ||
.collect(); | ||
items_sorted_by_value_density.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); | ||
|
||
fn calculate_bound(node: &Node, maximum_weight_capacity: usize, items_sorted_by_value_density: &[(usize, f64)], item_weights: &[usize], item_values: &[usize]) -> f64 { | ||
if node.weight >= maximum_weight_capacity { | ||
return 0.0; | ||
} | ||
|
||
let mut bound = node.profit as f64; | ||
let mut total_weight = node.weight; | ||
let mut j = node.level; | ||
|
||
while j < items_sorted_by_value_density.len() && total_weight + item_weights[items_sorted_by_value_density[j].0] <= maximum_weight_capacity { | ||
total_weight += item_weights[items_sorted_by_value_density[j].0]; | ||
bound += item_values[items_sorted_by_value_density[j].0] as f64; | ||
j += 1; | ||
} | ||
|
||
if j < items_sorted_by_value_density.len() { | ||
bound += (maximum_weight_capacity - total_weight) as f64 * items_sorted_by_value_density[j].1; | ||
} | ||
|
||
bound | ||
} | ||
|
||
let mut max_profit = 0; | ||
let mut best_items = Vec::new(); | ||
let mut nodes = vec![Node::new(0, 0, 0, 0.0, Vec::new())]; | ||
nodes[0].bound = calculate_bound(&nodes[0], maximum_weight_capacity, &items_sorted_by_value_density, &item_weights, &item_values); | ||
|
||
while let Some(node) = nodes.pop() { | ||
if node.bound > max_profit as f64 && node.level < number_of_items { | ||
let next_level = node.level + 1; | ||
|
||
// Explore the node including the next item | ||
let next_item_index = items_sorted_by_value_density[node.level].0; | ||
let next_weight = node.weight + item_weights[next_item_index]; | ||
let next_profit = node.profit + item_values[next_item_index]; | ||
|
||
let mut include_items = node.items.clone(); | ||
include_items.push(next_item_index); | ||
|
||
if next_weight <= maximum_weight_capacity && next_profit > max_profit { | ||
max_profit = next_profit; | ||
best_items = include_items.clone(); | ||
} | ||
|
||
let mut include_node = Node::new(next_level, next_profit, next_weight, 0.0, include_items); | ||
include_node.bound = calculate_bound(&include_node, maximum_weight_capacity, &items_sorted_by_value_density, &item_weights, &item_values); | ||
|
||
if include_node.bound > max_profit as f64 { | ||
let pos = nodes.binary_search_by(|n| n.bound.partial_cmp(&include_node.bound).unwrap()).unwrap_or_else(|e| e); | ||
nodes.insert(pos, include_node); | ||
} | ||
|
||
// Explore the node excluding the next item | ||
let mut exclude_node = Node::new(next_level, node.profit, node.weight, 0.0, node.items.clone()); | ||
exclude_node.bound = calculate_bound(&exclude_node, maximum_weight_capacity, &items_sorted_by_value_density, &item_weights, &item_values); | ||
|
||
if exclude_node.bound > max_profit as f64 { | ||
let pos = nodes.binary_search_by(|n| n.bound.partial_cmp(&exclude_node.bound).unwrap()).unwrap_or_else(|e| e); | ||
nodes.insert(pos, exclude_node); | ||
} | ||
} | ||
} | ||
|
||
if max_profit >= minimum_value_required { | ||
Ok(Some(Solution { items: best_items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
// Important! Do not include any tests in this file, it will result in your submission being rejected | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
Oops, something went wrong.