-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Compiled vector_search/brute_force_bacalhau
- Loading branch information
1 parent
81c01e5
commit 3529c34
Showing
9 changed files
with
573 additions
and
25 deletions.
There are no files selected for viewing
113 changes: 113 additions & 0 deletions
113
tig-algorithms/src/vector_search/brute_force_bacalhau/benchmarker_outbound.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
/*! | ||
Copyright 2024 Louis Silva | ||
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
use anyhow::Result; | ||
|
||
use tig_challenges::vector_search::*; | ||
|
||
#[inline] | ||
fn l2_norm(x: &[f32]) -> f32 { | ||
x.iter().map(|&val| val * val).sum::<f32>().sqrt() | ||
} | ||
|
||
#[inline] | ||
fn euclidean_distance_with_precomputed_norm( | ||
a_norm_sq: f32, | ||
b_norm_sq: f32, | ||
ab_dot_product: f32 | ||
) -> f32 { | ||
(a_norm_sq + b_norm_sq - 2.0 * ab_dot_product).sqrt() | ||
} | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let vector_database: &Vec<Vec<f32>> = &challenge.vector_database; | ||
let query_vectors: &Vec<Vec<f32>> = &challenge.query_vectors; | ||
let max_distance: f32 = challenge.max_distance; | ||
|
||
let mut indexes: Vec<usize> = Vec::with_capacity(query_vectors.len()); | ||
let mut vector_norms_sq: Vec<f32> = Vec::with_capacity(vector_database.len()); | ||
|
||
let mut sum_norms_sq: f32 = 0.0; | ||
let mut sum_squares: f32 = 0.0; | ||
|
||
for vector in vector_database { | ||
let norm_sq: f32 = vector.iter().map(|&val| val * val).sum(); | ||
sum_norms_sq += norm_sq.sqrt(); | ||
sum_squares += norm_sq; | ||
vector_norms_sq.push(norm_sq); | ||
} | ||
|
||
let vector_norms_len: f32 = vector_norms_sq.len() as f32; | ||
let std_dev: f32 = ((sum_squares / vector_norms_len) - (sum_norms_sq / vector_norms_len).powi(2)).sqrt(); | ||
let norm_threshold: f32 = 2.0 * std_dev; | ||
|
||
for query in query_vectors { | ||
let query_norm_sq: f32 = query.iter().map(|&val| val * val).sum(); | ||
|
||
let mut closest_index: Option<usize> = None; | ||
let mut closest_distance: f32 = f32::MAX; | ||
|
||
for (idx, vector) in vector_database.iter().enumerate() { | ||
let vector_norm_sq = vector_norms_sq[idx]; | ||
if ((vector_norm_sq.sqrt() - query_norm_sq.sqrt()).abs()) > norm_threshold { | ||
continue; | ||
} | ||
|
||
let ab_dot_product: f32 = query.iter().zip(vector).map(|(&x1, &x2)| x1 * x2).sum(); | ||
let distance: f32 = euclidean_distance_with_precomputed_norm( | ||
query_norm_sq, | ||
vector_norm_sq, | ||
ab_dot_product, | ||
); | ||
|
||
if distance <= max_distance { | ||
closest_index = Some(idx); | ||
break; // Early exit | ||
} else if distance < closest_distance { | ||
closest_index = Some(idx); | ||
closest_distance = distance; | ||
} | ||
} | ||
|
||
if let Some(index) = closest_index { | ||
indexes.push(index); | ||
} else { | ||
return Ok(None); | ||
} | ||
} | ||
|
||
Ok(Some(Solution { indexes })) | ||
} | ||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
113 changes: 113 additions & 0 deletions
113
tig-algorithms/src/vector_search/brute_force_bacalhau/commercial.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
/*! | ||
Copyright 2024 Louis Silva | ||
Licensed under the TIG Commercial License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
use anyhow::Result; | ||
|
||
use tig_challenges::vector_search::*; | ||
|
||
#[inline] | ||
fn l2_norm(x: &[f32]) -> f32 { | ||
x.iter().map(|&val| val * val).sum::<f32>().sqrt() | ||
} | ||
|
||
#[inline] | ||
fn euclidean_distance_with_precomputed_norm( | ||
a_norm_sq: f32, | ||
b_norm_sq: f32, | ||
ab_dot_product: f32 | ||
) -> f32 { | ||
(a_norm_sq + b_norm_sq - 2.0 * ab_dot_product).sqrt() | ||
} | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let vector_database: &Vec<Vec<f32>> = &challenge.vector_database; | ||
let query_vectors: &Vec<Vec<f32>> = &challenge.query_vectors; | ||
let max_distance: f32 = challenge.max_distance; | ||
|
||
let mut indexes: Vec<usize> = Vec::with_capacity(query_vectors.len()); | ||
let mut vector_norms_sq: Vec<f32> = Vec::with_capacity(vector_database.len()); | ||
|
||
let mut sum_norms_sq: f32 = 0.0; | ||
let mut sum_squares: f32 = 0.0; | ||
|
||
for vector in vector_database { | ||
let norm_sq: f32 = vector.iter().map(|&val| val * val).sum(); | ||
sum_norms_sq += norm_sq.sqrt(); | ||
sum_squares += norm_sq; | ||
vector_norms_sq.push(norm_sq); | ||
} | ||
|
||
let vector_norms_len: f32 = vector_norms_sq.len() as f32; | ||
let std_dev: f32 = ((sum_squares / vector_norms_len) - (sum_norms_sq / vector_norms_len).powi(2)).sqrt(); | ||
let norm_threshold: f32 = 2.0 * std_dev; | ||
|
||
for query in query_vectors { | ||
let query_norm_sq: f32 = query.iter().map(|&val| val * val).sum(); | ||
|
||
let mut closest_index: Option<usize> = None; | ||
let mut closest_distance: f32 = f32::MAX; | ||
|
||
for (idx, vector) in vector_database.iter().enumerate() { | ||
let vector_norm_sq = vector_norms_sq[idx]; | ||
if ((vector_norm_sq.sqrt() - query_norm_sq.sqrt()).abs()) > norm_threshold { | ||
continue; | ||
} | ||
|
||
let ab_dot_product: f32 = query.iter().zip(vector).map(|(&x1, &x2)| x1 * x2).sum(); | ||
let distance: f32 = euclidean_distance_with_precomputed_norm( | ||
query_norm_sq, | ||
vector_norm_sq, | ||
ab_dot_product, | ||
); | ||
|
||
if distance <= max_distance { | ||
closest_index = Some(idx); | ||
break; // Early exit | ||
} else if distance < closest_distance { | ||
closest_index = Some(idx); | ||
closest_distance = distance; | ||
} | ||
} | ||
|
||
if let Some(index) = closest_index { | ||
indexes.push(index); | ||
} else { | ||
return Ok(None); | ||
} | ||
} | ||
|
||
Ok(Some(Solution { indexes })) | ||
} | ||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
113 changes: 113 additions & 0 deletions
113
tig-algorithms/src/vector_search/brute_force_bacalhau/inbound.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
/*! | ||
Copyright 2024 Louis Silva | ||
Licensed under the TIG Inbound Game License v1.0 or (at your option) any later | ||
version (the "License"); you may not use this file except in compliance with the | ||
License. You may obtain a copy of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
use anyhow::Result; | ||
|
||
use tig_challenges::vector_search::*; | ||
|
||
#[inline] | ||
fn l2_norm(x: &[f32]) -> f32 { | ||
x.iter().map(|&val| val * val).sum::<f32>().sqrt() | ||
} | ||
|
||
#[inline] | ||
fn euclidean_distance_with_precomputed_norm( | ||
a_norm_sq: f32, | ||
b_norm_sq: f32, | ||
ab_dot_product: f32 | ||
) -> f32 { | ||
(a_norm_sq + b_norm_sq - 2.0 * ab_dot_product).sqrt() | ||
} | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let vector_database: &Vec<Vec<f32>> = &challenge.vector_database; | ||
let query_vectors: &Vec<Vec<f32>> = &challenge.query_vectors; | ||
let max_distance: f32 = challenge.max_distance; | ||
|
||
let mut indexes: Vec<usize> = Vec::with_capacity(query_vectors.len()); | ||
let mut vector_norms_sq: Vec<f32> = Vec::with_capacity(vector_database.len()); | ||
|
||
let mut sum_norms_sq: f32 = 0.0; | ||
let mut sum_squares: f32 = 0.0; | ||
|
||
for vector in vector_database { | ||
let norm_sq: f32 = vector.iter().map(|&val| val * val).sum(); | ||
sum_norms_sq += norm_sq.sqrt(); | ||
sum_squares += norm_sq; | ||
vector_norms_sq.push(norm_sq); | ||
} | ||
|
||
let vector_norms_len: f32 = vector_norms_sq.len() as f32; | ||
let std_dev: f32 = ((sum_squares / vector_norms_len) - (sum_norms_sq / vector_norms_len).powi(2)).sqrt(); | ||
let norm_threshold: f32 = 2.0 * std_dev; | ||
|
||
for query in query_vectors { | ||
let query_norm_sq: f32 = query.iter().map(|&val| val * val).sum(); | ||
|
||
let mut closest_index: Option<usize> = None; | ||
let mut closest_distance: f32 = f32::MAX; | ||
|
||
for (idx, vector) in vector_database.iter().enumerate() { | ||
let vector_norm_sq = vector_norms_sq[idx]; | ||
if ((vector_norm_sq.sqrt() - query_norm_sq.sqrt()).abs()) > norm_threshold { | ||
continue; | ||
} | ||
|
||
let ab_dot_product: f32 = query.iter().zip(vector).map(|(&x1, &x2)| x1 * x2).sum(); | ||
let distance: f32 = euclidean_distance_with_precomputed_norm( | ||
query_norm_sq, | ||
vector_norm_sq, | ||
ab_dot_product, | ||
); | ||
|
||
if distance <= max_distance { | ||
closest_index = Some(idx); | ||
break; // Early exit | ||
} else if distance < closest_distance { | ||
closest_index = Some(idx); | ||
closest_distance = distance; | ||
} | ||
} | ||
|
||
if let Some(index) = closest_index { | ||
indexes.push(index); | ||
} else { | ||
return Ok(None); | ||
} | ||
} | ||
|
||
Ok(Some(Solution { indexes })) | ||
} | ||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
// set KERNEL to None if algorithm only has a CPU implementation | ||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
// Important! your GPU and CPU version of the algorithm should return the same result | ||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
Oops, something went wrong.