Skip to content

thdgudcks/adversarial-autoencoder

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial Autoencoders (AAE)

This is a Tensorflow 2.0 implementation of Adversarial Autoencoders by Alireza Makhzani et al. (ICLR 2016). This repository contains reproduce of several experiments mentioned in the paper.

Requirements

Results

Unsupervised AAE deterministic

Latent space Latent space Reconstruction Latent space Sampled Latent space

Unsupervised AAE deterministic convolutional

Latent space Latent space Reconstruction Latent space Sampled Latent space

Unsupervised AAE deterministic convolutional using WGAN loss function

Latent space Latent space Reconstruction Latent space Sampled Latent space

Unsupervised AAE probabilistic

Latent space Latent space Reconstruction Latent space Sampled Latent space

Unsupervised AAE probabilistic convolutional

Latent space Latent space Reconstruction Latent space Sampled Latent space

Supervised AAE deterministic

Latent space Latent space Reconstruction Latent space Sampled Latent space

Supervised AAE deterministic convolutional

Latent space Latent space Reconstruction Latent space Sampled Latent space

About

Tensorflow 2.0 implementation of Adversarial Autoencoders

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%