Skip to content

Evaluated the performance of using different GAN architectures such as FCN-RNN and C-RNN GANs for music generation

Notifications You must be signed in to change notification settings

teomotun/Music-Generation-with-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Music-Generation-with-GAN


gan_network


Generating music is notably different from generating images, texts or videos. The implicit complexity of modeling the sequence of notes and their corresponding frequencies to generate frequencies that are melodious, is a challenge of its own. While images and videos require extensive exploration of local patterns, each musical track embeds its own temporal dynamics, with a variety of notes, pitches, tones and other nuances that need to be accurately modelled. Many researchers have worked around this problem by using discrete symbolic representation of music which does not essentially capture such nuances. We take our cue from the success of Generative Adversarial Networks (GANs) and apply it to a continuous representation of music to generate melodies. In this project, we evaluate the performance of using different GAN architectures such as FCN-RNN and C-RNN GANs for music generation.

About

Evaluated the performance of using different GAN architectures such as FCN-RNN and C-RNN GANs for music generation

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published