Skip to content

Commit

Permalink
(partial) Clang-tidy automatic sweep after pulling in latest main
Browse files Browse the repository at this point in the history
  • Loading branch information
afuller-TT committed Nov 25, 2024
1 parent 71009de commit e9f63eb
Show file tree
Hide file tree
Showing 19 changed files with 47 additions and 47 deletions.
8 changes: 4 additions & 4 deletions tt_metal/impl/buffers/buffer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -522,17 +522,17 @@ DeviceAddr ShardSpecBuffer::size() const {

v1::BufferHandle v1::CreateBuffer(InterleavedBufferConfig config) { return v1::BufferHandle{v0::CreateBuffer(config)}; }

void v1::DeallocateBuffer(BufferHandle buffer) { v0::DeallocateBuffer(*buffer); }
void v1::DeallocateBuffer(const BufferHandle& buffer) { v0::DeallocateBuffer(*buffer); }

void v1::WriteToBuffer(BufferHandle buffer, stl::Span<const std::byte> host_buffer) {
void v1::WriteToBuffer(const BufferHandle& buffer, stl::Span<const std::byte> host_buffer) {
detail::WriteToBuffer(*buffer, stl::Span<const uint8_t>{reinterpret_cast<const std::uint8_t *>(host_buffer.data()), host_buffer.size()});
}

void v1::ReadFromBuffer(BufferHandle buffer, stl::Span<std::byte> host_buffer, bool shard_order) {
void v1::ReadFromBuffer(const BufferHandle& buffer, stl::Span<std::byte> host_buffer, bool shard_order) {
detail::ReadFromBuffer(*buffer, reinterpret_cast<std::uint8_t *>(host_buffer.data()), shard_order);
}

void v1::ReadFromShard(BufferHandle buffer, stl::Span<std::byte> host_buffer, std::uint32_t core_id) {
void v1::ReadFromShard(const BufferHandle& buffer, stl::Span<std::byte> host_buffer, std::uint32_t core_id) {
detail::ReadShard(*buffer, reinterpret_cast<std::uint8_t *>(host_buffer.data()), core_id);
}

Expand Down
4 changes: 2 additions & 2 deletions tt_metal/impl/dispatch/command_queue.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3504,11 +3504,11 @@ v1::CommandQueueHandle v1::GetCommandQueue(DeviceHandle device, std::uint8_t cq_

v1::CommandQueueHandle v1::GetDefaultCommandQueue(DeviceHandle device) { return GetCommandQueue(device, 0); }

void v1::EnqueueReadBuffer(CommandQueueHandle cq, BufferHandle buffer, std::byte *dst, bool blocking) {
void v1::EnqueueReadBuffer(CommandQueueHandle cq, const BufferHandle& buffer, std::byte *dst, bool blocking) {
v0::EnqueueReadBuffer(GetDevice(cq)->command_queue(GetId(cq)), *buffer, dst, blocking);
}

void v1::EnqueueWriteBuffer(CommandQueueHandle cq, BufferHandle buffer, const std::byte *src, bool blocking) {
void v1::EnqueueWriteBuffer(CommandQueueHandle cq, const BufferHandle& buffer, const std::byte *src, bool blocking) {
v0::EnqueueWriteBuffer(GetDevice(cq)->command_queue(GetId(cq)), *buffer, src, blocking);
}

Expand Down
6 changes: 3 additions & 3 deletions tt_metal/impl/event/event.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,16 +37,16 @@ v1::EventHandle v1::EnqueueRecordEvent(CommandQueueHandle cq) {
return event;
}

void v1::EnqueueWaitForEvent(CommandQueueHandle cq, EventHandle event) {
void v1::EnqueueWaitForEvent(CommandQueueHandle cq, const EventHandle& event) {
v0::EnqueueWaitForEvent(
GetDevice(cq)->command_queue(GetId(cq)), static_cast<const std::shared_ptr<v0::Event> &>(event));
}

void v1::EventSynchronize(EventHandle event) {
void v1::EventSynchronize(const EventHandle& event) {
v0::EventSynchronize(static_cast<const std::shared_ptr<v0::Event> &>(event));
}

bool v1::EventQuery(EventHandle event) {
bool v1::EventQuery(const EventHandle& event) {
return v0::EventQuery(static_cast<const std::shared_ptr<v0::Event> &>(event));
}

Expand Down
8 changes: 4 additions & 4 deletions tt_metal/include/tt_metal/buffer.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,15 +26,15 @@ BufferHandle CreateBuffer(InterleavedBufferConfig config);
*
* @param buffer The buffer to deallocate.
*/
void DeallocateBuffer(BufferHandle buffer);
void DeallocateBuffer(const BufferHandle& buffer);

/**
* @brief Copies data from a host buffer into the specified device buffer.
*
* @param buffer Buffer to write data into.
* @param host_buffer Host buffer containing data to copy.
*/
void WriteToBuffer(BufferHandle buffer, stl::Span<const std::byte> host_buffer);
void WriteToBuffer(const BufferHandle& buffer, stl::Span<const std::byte> host_buffer);

/**
* @brief Copies data from a device buffer into a host buffer.
Expand All @@ -43,7 +43,7 @@ void WriteToBuffer(BufferHandle buffer, stl::Span<const std::byte> host_buffer);
* @param host_buffer Host buffer to copy data into.
* @param shard_order If true, reads data in shard order.
*/
void ReadFromBuffer(BufferHandle buffer, stl::Span<std::byte> host_buffer, bool shard_order = false);
void ReadFromBuffer(const BufferHandle& buffer, stl::Span<std::byte> host_buffer, bool shard_order = false);

/**
* @brief Copies data from a specific shard of a device buffer into a host buffer.
Expand All @@ -52,7 +52,7 @@ void ReadFromBuffer(BufferHandle buffer, stl::Span<std::byte> host_buffer, bool
* @param host_buffer Host buffer to copy data into.
* @param core_id ID of the core shard to read.
*/
void ReadFromShard(BufferHandle buffer, stl::Span<std::byte> host_buffer, std::uint32_t core_id);
void ReadFromShard(const BufferHandle& buffer, stl::Span<std::byte> host_buffer, std::uint32_t core_id);

} // namespace v1
} // namespace tt::tt_metal
4 changes: 2 additions & 2 deletions tt_metal/include/tt_metal/command_queue.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ CommandQueueHandle GetDefaultCommandQueue(DeviceHandle device);
*/
void EnqueueReadBuffer(
CommandQueueHandle cq,
BufferHandle buffer,
const BufferHandle& buffer,
std::byte *dst,
bool blocking);

Expand All @@ -55,7 +55,7 @@ void EnqueueReadBuffer(
*/
void EnqueueWriteBuffer(
CommandQueueHandle cq,
BufferHandle buffer,
const BufferHandle& buffer,
const std::byte *src,
bool blocking);

Expand Down
6 changes: 3 additions & 3 deletions tt_metal/include/tt_metal/event.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,22 +27,22 @@ EventHandle EnqueueRecordEvent(CommandQueueHandle cq);
* @param cq The command queue that will wait for the event.
* @param event Handle to the Event object to wait on.
*/
void EnqueueWaitForEvent(CommandQueueHandle cq, EventHandle event);
void EnqueueWaitForEvent(CommandQueueHandle cq, const EventHandle& event);

/**
* @brief Blocks the host until the specified event has completed on the device.
*
* @param event Handle to the Event object to synchronize.
*/
void EventSynchronize(EventHandle event);
void EventSynchronize(const EventHandle& event);

/**
* @brief Queries the completion status of an event on the device.
*
* @param event Handle to the Event object to query.
* @return True if the event is completed; otherwise, false.
*/
bool EventQuery(EventHandle event);
bool EventQuery(const EventHandle& event);


/**
Expand Down
2 changes: 1 addition & 1 deletion tt_metal/jit_build/genfiles.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ generate_unpack_data_formats(tt_hlk_desc& desc, DataFormat unpack_conditional_ds
vector<DataFormat> src_formats = tt::get_unpack_src_formats(desc.buf_dataformat_arr);

vector<DataFormat> dst_formats = tt::get_unpack_dst_formats(
desc.buf_dataformat_arr, unpack_conditional_dst_format, fp32_dest_acc_en, unpack_to_dest_mode);
desc.buf_dataformat_arr, unpack_conditional_dst_format, fp32_dest_acc_en, std::move(unpack_to_dest_mode));

TT_ASSERT(src_formats.size() == NUM_CIRCULAR_BUFFERS);
TT_ASSERT(dst_formats.size() == NUM_CIRCULAR_BUFFERS);
Expand Down
8 changes: 4 additions & 4 deletions ttnn/cpp/ttnn/operations/eltwise/binary/binary_composite.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -78,15 +78,15 @@ struct ExecuteDiv
const Tensor& input_tensor_a,
const Tensor& input_tensor_b,
bool accurate_mode = false,
const std::optional<std::string> round_mode = std::nullopt,
const std::optional<std::string>& round_mode = std::nullopt,
const std::optional<MemoryConfig>& memory_config = std::nullopt,
std::optional<Tensor> optional_output_tensor = std::nullopt);

static Tensor invoke(
const Tensor& input_tensor,
float value,
bool accurate_mode = false,
const std::optional<std::string> round_mode = std::nullopt,
const std::optional<std::string>& round_mode = std::nullopt,
const std::optional<MemoryConfig>& memory_config = std::nullopt,
std::optional<Tensor> optional_output_tensor = std::nullopt);

Expand All @@ -95,7 +95,7 @@ struct ExecuteDiv
const Tensor& input_tensor_a,
const Tensor& input_tensor_b,
bool accurate_mode = false,
const std::optional<std::string> round_mode = std::nullopt,
const std::optional<std::string>& round_mode = std::nullopt,
const std::optional<MemoryConfig>& memory_config = std::nullopt,
std::optional<Tensor> optional_output_tensor = std::nullopt);

Expand All @@ -104,7 +104,7 @@ struct ExecuteDiv
const Tensor& input_tensor,
float value,
bool accurate_mode = false,
const std::optional<std::string> round_mode = std::nullopt,
const std::optional<std::string>& round_mode = std::nullopt,
const std::optional<MemoryConfig>& memory_config = std::nullopt,
std::optional<Tensor> optional_output_tensor = std::nullopt);
};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ Tensor _atan2(const Tensor& input_a, const Tensor& input_b, const std::optional<
}


Tensor ExecuteDiv::invoke(uint8_t queue_id, const Tensor& input, float value, bool accurate_mode, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
Tensor ExecuteDiv::invoke(uint8_t queue_id, const Tensor& input, float value, bool accurate_mode, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
TT_FATAL((round_mode == std::nullopt || round_mode == "trunc" || round_mode == "floor"), "Incorrect rounding mode (expected None, 'trunc', or 'floor')");
output_tensor = output_tensor.value_or(ttnn::zeros_like(input));
ttnn::multiply(queue_id, input, (1.0f/value), std::nullopt, output_mem_config, output_tensor);
Expand All @@ -185,11 +185,11 @@ Tensor ExecuteDiv::invoke(uint8_t queue_id, const Tensor& input, float value, bo
return output_tensor.value();
}

Tensor ExecuteDiv::invoke(const Tensor& input, float value, bool accurate_mode, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
return ExecuteDiv::invoke(DefaultQueueId, input, value, accurate_mode, round_mode, output_mem_config, output_tensor);
Tensor ExecuteDiv::invoke(const Tensor& input, float value, bool accurate_mode, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
return ExecuteDiv::invoke(DefaultQueueId, input, value, accurate_mode, round_mode, output_mem_config, std::move(output_tensor));
}

Tensor ExecuteDiv::invoke(uint8_t queue_id, const Tensor& input_a, const Tensor& input_b, bool accurate_mode, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
Tensor ExecuteDiv::invoke(uint8_t queue_id, const Tensor& input_a, const Tensor& input_b, bool accurate_mode, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
TT_FATAL((round_mode == std::nullopt || round_mode == "trunc" || round_mode == "floor"), "Incorrect rounding mode (expected None, 'trunc', or 'floor')");
output_tensor = output_tensor.value_or(ttnn::empty_like(input_a));
auto arch = input_a.device()->arch();
Expand Down Expand Up @@ -256,8 +256,8 @@ Tensor ExecuteDiv::invoke(uint8_t queue_id, const Tensor& input_a, const Tensor&
}
}

Tensor ExecuteDiv::invoke(const Tensor& input_a, const Tensor& input_b, bool accurate_mode, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
return ExecuteDiv::invoke(DefaultQueueId, input_a, input_b, accurate_mode, round_mode, output_mem_config, output_tensor);
Tensor ExecuteDiv::invoke(const Tensor& input_a, const Tensor& input_b, bool accurate_mode, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> output_tensor) {
return ExecuteDiv::invoke(DefaultQueueId, input_a, input_b, accurate_mode, round_mode, output_mem_config, std::move(output_tensor));
}

Tensor _div_no_nan_overload(const Tensor& input_a, float value, const std::optional<MemoryConfig>& output_mem_config) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -604,7 +604,7 @@ std::vector<ttnn::Tensor> ExecuteBackwardMin::invoke(const Tensor& grad, const T
}

std::vector<std::optional<ttnn::Tensor>> ExecuteBackwardDiv::invoke(
uint8_t queue_id, const Tensor& grad, const Tensor& input, float scalar, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> input_grad) {
uint8_t queue_id, const Tensor& grad, const Tensor& input, float scalar, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> input_grad) {
TT_FATAL((round_mode == std::nullopt || round_mode == "trunc" || round_mode == "floor"), "Incorrect rounding mode (expected None, 'trunc', or 'floor')");

std::vector<std::optional<Tensor>> result;
Expand All @@ -629,16 +629,16 @@ std::vector<std::optional<ttnn::Tensor>> ExecuteBackwardDiv::invoke(
}

std::vector<std::optional<ttnn::Tensor>> ExecuteBackwardDiv::invoke(
const Tensor& grad, const Tensor& input, float scalar, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> input_grad) {
return ExecuteBackwardDiv::invoke(DefaultQueueId, grad, input, scalar, round_mode, output_mem_config, input_grad);
const Tensor& grad, const Tensor& input, float scalar, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& output_mem_config, std::optional<Tensor> input_grad) {
return ExecuteBackwardDiv::invoke(DefaultQueueId, grad, input, scalar, round_mode, output_mem_config, std::move(input_grad));
}

std::vector<std::optional<ttnn::Tensor>> ExecuteBackwardDiv::invoke(
uint8_t queue_id,
const Tensor& grad,
const Tensor& input,
const Tensor& other,
const std::optional<std::string> round_mode,
const std::optional<std::string>& round_mode,
const std::vector<bool>& are_required_outputs,
const std::optional<MemoryConfig>& output_mem_config,
std::optional<Tensor> input_grad,
Expand Down Expand Up @@ -716,7 +716,7 @@ std::vector<std::optional<ttnn::Tensor>> ExecuteBackwardDiv::invoke(
const Tensor& grad,
const Tensor& input,
const Tensor& other,
const std::optional<std::string> round_mode,
const std::optional<std::string>& round_mode,
const std::vector<bool>& are_required_outputs,
const std::optional<MemoryConfig>& output_mem_config,
std::optional<Tensor> input_grad,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,7 @@ struct ExecuteBackwardDiv {
const Tensor &grad_tensor_arg,
const Tensor &input_tensor_arg,
float scalar,
const std::optional<string> round_mode = std::nullopt,
const std::optional<string>& round_mode = std::nullopt,
const std::optional<MemoryConfig> &memory_config = std::nullopt,
std::optional<Tensor> input_grad = std::nullopt);

Expand All @@ -323,7 +323,7 @@ struct ExecuteBackwardDiv {
const Tensor &grad_tensor_arg,
const Tensor &input_tensor_arg,
const Tensor &other_tensor_arg,
const std::optional<string> round_mode = std::nullopt,
const std::optional<string>& round_mode = std::nullopt,
const std::vector<bool> &are_required_outputs = std::vector<bool>{true, true},
const std::optional<MemoryConfig> &memory_config = std::nullopt,
std::optional<Tensor> input_grad = std::nullopt,
Expand All @@ -333,15 +333,15 @@ struct ExecuteBackwardDiv {
const Tensor &grad_tensor_arg,
const Tensor &input_tensor_arg,
float scalar,
const std::optional<string> round_mode = std::nullopt,
const std::optional<string>& round_mode = std::nullopt,
const std::optional<MemoryConfig> &memory_config = std::nullopt,
std::optional<Tensor> input_grad = std::nullopt);

static std::vector<std::optional<Tensor>> invoke(
const Tensor &grad_tensor_arg,
const Tensor &input_tensor_arg,
const Tensor &other_tensor_arg,
const std::optional<string> round_mode = std::nullopt,
const std::optional<string>& round_mode = std::nullopt,
const std::vector<bool> &are_required_outputs = std::vector<bool>{true, true},
const std::optional<MemoryConfig> &memory_config = std::nullopt,
std::optional<Tensor> input_grad = std::nullopt,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -698,7 +698,7 @@ Tensor _polygamma(const Tensor& input_a, int32_t k, const std::optional<MemoryCo
}

//rdiv
Tensor ExecuteRdiv::invoke(uint8_t queue_id, const Tensor& input_tensor, float value, const std::optional<std::string> round_mode, const std::optional<MemoryConfig>& memory_config, std::optional<Tensor> optional_output_tensor) {
Tensor ExecuteRdiv::invoke(uint8_t queue_id, const Tensor& input_tensor, float value, const std::optional<std::string>& round_mode, const std::optional<MemoryConfig>& memory_config, std::optional<Tensor> optional_output_tensor) {
TT_FATAL((round_mode == std::nullopt || round_mode == "trunc" || round_mode == "floor"), "Incorrect rounding mode (expected None, 'trunc', or 'floor')");
float t_inf = std::numeric_limits<float>::infinity();
Tensor recip_result = ttnn::reciprocal(queue_id, input_tensor, memory_config, optional_output_tensor);
Expand Down
2 changes: 1 addition & 1 deletion ttnn/cpp/ttnn/operations/eltwise/unary/unary_composite.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ struct ExecuteRdiv {
uint8_t queue_id,
const Tensor& input_tensor,
float value,
const std::optional<std::string> round_mode = std::nullopt,
const std::optional<std::string>& round_mode = std::nullopt,
const std::optional<MemoryConfig>& memory_config = std::nullopt,
std::optional<Tensor> optional_output_tensor = std::nullopt);
};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ std::vector<Tensor> ExecuteUnaryBackwardClip::invoke(

std::vector<Tensor> ExecuteUnaryBackwardClip::invoke(
const Tensor& grad, const Tensor& input, std::optional<Tensor> min, std::optional<Tensor> max, const std::optional<MemoryConfig>& output_mem_config) {
return ExecuteUnaryBackwardClamp::invoke(grad, input, min, max, output_mem_config);
return ExecuteUnaryBackwardClamp::invoke(grad, input, std::move(min), std::move(max), output_mem_config);
}

// Hardtanh
Expand Down Expand Up @@ -135,7 +135,7 @@ std::vector<Tensor> ExecuteUnaryBackwardSoftplus::invoke(
}

std::vector<Tensor> ExecuteUnaryBackwardRdiv::invoke(
const Tensor& grad, const Tensor& input, float scalar, const std::optional<string> round_mode, const std::optional<MemoryConfig>& output_mem_config) {
const Tensor& grad, const Tensor& input, float scalar, const std::optional<string>& round_mode, const std::optional<MemoryConfig>& output_mem_config) {
std::vector<Tensor> grad_tensor;
TT_FATAL((round_mode == std::nullopt || round_mode == "trunc" || round_mode == "floor"), "Incorrect rounding mode (expected None, 'trunc', or 'floor')");
float t_nan = std::nanf("");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -488,7 +488,7 @@ struct ExecuteUnaryBackwardRdiv {
const Tensor &grad_tensor_arg,
const Tensor &input_tensor_arg,
float parameter_a,
const std::optional<string> parameter_b = std::nullopt,
const std::optional<string>& parameter_b = std::nullopt,
const std::optional<MemoryConfig> &memory_config = std::nullopt);
};

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ UpdateCacheKernels setup_kernels_for_update_cache(
return {unary_reader_kernel_id, unary_writer_kernel_id, compute_kernel_id, cores};
}

operation::ProgramWithCallbacks paged_fused_update_cache_multi_core(const Tensor& cache_tensor1, const Tensor &input_tensor1, const Tensor& cache_tensor2, const Tensor &input_tensor2, std::optional<const Tensor> update_idxs_tensor, std::optional<const Tensor> page_table, const std::vector<uint32_t> update_idxs, const uint32_t batch_offset, ttnn::DeviceComputeKernelConfig compute_kernel_config, const bool share_cache) {
operation::ProgramWithCallbacks paged_fused_update_cache_multi_core(const Tensor& cache_tensor1, const Tensor &input_tensor1, const Tensor& cache_tensor2, const Tensor &input_tensor2, std::optional<const Tensor> update_idxs_tensor, std::optional<const Tensor> page_table, const std::vector<uint32_t>& update_idxs, const uint32_t batch_offset, ttnn::DeviceComputeKernelConfig compute_kernel_config, const bool share_cache) {
Program program{};

uint32_t num_caches = 2;
Expand Down
Loading

0 comments on commit e9f63eb

Please sign in to comment.