-
Notifications
You must be signed in to change notification settings - Fork 113
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Includes APIs to set MeshProgram configuration across entire MeshDevice or per device in the Mesh. APIs are analogous to Program config APIs - Basic getter APIs to return individual programs and state across MeshProgram - Relies on distribute_impl_ and distribute_to_mesh_device_ functions - distribute_impl_ serves as the MeshProgram entry point on the Controller or Executor to process attributes of this data structure on host(s) - This function is currently implemented as a simple loop, but it can be swapped out for a set of RPC calls on the Controller and asynchronous calls on the executor - distribute_to_mesh_device_impl_ serves as the interface between the MeshProgram on host and the MeshDevice. Curently used in EnqueueMeshProgram and implemented using a simple loop. Can be used to interface with TT-Fabric, once the infra is available - Design aspects to consider as we go along: - Does a MeshProgram span Controllers, or is it limited to a Controller connected to a single cluster. APIs and heirachy may be easier with MeshProgram <--> Controller <--> MeshDevice mapping - For programs we want to broadcast, we don't need the host to perform repeated work across the entire device mesh (it currently does). Likely makes sense to have a bcast setting in the MeshProgram class, to ensure that host sets configuration data once with fast dispatch/fabric performing the bcast - Potential Hierarchy: - Controller populates MeshProgram with kernels, sems, CBs and RTAs (individual programs, single program bcast or multi-program bcast). Population can be done with a reimplementation of distributed_impl_ on the controller - MeshProgram is sent to Executors through a virtual CQ (RPC call + cq_id). This is through a specialized distribute_to_mesh_device_impl_ on the Controller. - Executors get a MeshProgram, which can be scattered or broadcasted through the specified CQ using Fast Dispatch and Fabric. Assembling FD/Fabric commands can be host intensive, and it would thus make sense to distribute these steps across Exectuors. Executors get the MeshProgram to the MeshDevice through a specialized distribute_to_mesh_device_impl_ - For generic entry points to mutate Mesh data structures and send them to the Mesh device, we need generic distribute* functions that can accept any data type and perform generic processing (assemble FD commands, make RPC calls, send programs or data to MeshDevice, etc.)
- Loading branch information
1 parent
fa69b0b
commit dea1940
Showing
5 changed files
with
481 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
201 changes: 201 additions & 0 deletions
201
tests/tt_metal/tt_metal/unit_tests_fast_dispatch/command_queue/test_mesh_program.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
// SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
// | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include <memory> | ||
#include "command_queue_fixture.hpp" | ||
#include "command_queue_test_utils.hpp" | ||
#include "gtest/gtest.h" | ||
#include "impl/buffers/buffer.hpp" | ||
#include "impl/device/device.hpp" | ||
#include "tt_metal/common/bfloat16.hpp" | ||
#include "tt_metal/common/scoped_timer.hpp" | ||
#include "tt_metal/host_api.hpp" | ||
#include "tt_metal/detail/tt_metal.hpp" | ||
#include "tt_metal/distributed/mesh_program.hpp" | ||
|
||
using namespace tt::tt_metal; | ||
|
||
struct CBConfig { | ||
uint32_t cb_id; | ||
uint32_t num_pages; | ||
uint32_t page_size; | ||
tt::DataFormat data_format; | ||
}; | ||
|
||
struct DummyProgramConfig { | ||
CoreRangeSet cr_set; | ||
CBConfig cb_config; | ||
uint32_t num_cbs; | ||
uint32_t num_sems; | ||
}; | ||
|
||
struct DummyProgramMultiCBConfig { | ||
CoreRangeSet cr_set; | ||
std::vector<CBConfig> cb_config_vector; | ||
uint32_t num_sems; | ||
}; | ||
|
||
void initialize_dummy_kernels(MeshProgram& mesh_program, const CoreRangeSet& cr_set) { | ||
auto dummy_reader_kernel = CreateKernel( | ||
mesh_program, "tt_metal/kernels/dataflow/blank.cpp", cr_set, | ||
DataMovementConfig{.processor = DataMovementProcessor::RISCV_1, .noc = NOC::RISCV_1_default}); | ||
|
||
auto dummy_writer_kernel = CreateKernel( | ||
mesh_program, "tt_metal/kernels/dataflow/blank.cpp", cr_set, | ||
DataMovementConfig{.processor = DataMovementProcessor::RISCV_0, .noc = NOC::RISCV_0_default}); | ||
|
||
auto dummy_compute_kernel = CreateKernel(mesh_program, "tt_metal/kernels/compute/blank.cpp", cr_set, ComputeConfig{}); | ||
} | ||
|
||
std::vector<CBHandle> initialize_dummy_circular_buffers(MeshProgram& mesh_program, const CoreRangeSet& cr_set, const std::vector<CBConfig>& cb_configs) | ||
{ | ||
std::vector<CBHandle> cb_handles; | ||
for (uint32_t i = 0; i < cb_configs.size(); i++) { | ||
const CBConfig& cb_config = cb_configs[i]; | ||
const uint32_t cb_id = cb_config.cb_id; | ||
const uint32_t cb_num_pages = cb_config.num_pages; | ||
const uint32_t page_size = cb_config.page_size; | ||
const uint32_t cb_size = cb_num_pages * page_size; | ||
const tt::DataFormat data_format = cb_config.data_format; | ||
const CircularBufferConfig circular_buffer_config = CircularBufferConfig(cb_size, {{cb_id, data_format}}).set_page_size(cb_id, page_size); | ||
const CBHandle cb_handle = CreateCircularBuffer(mesh_program, cr_set, circular_buffer_config); | ||
cb_handles.push_back(cb_handle); | ||
} | ||
return cb_handles; | ||
} | ||
|
||
void initialize_dummy_semaphores(MeshProgram& mesh_program, const std::variant<CoreRange, CoreRangeSet>& core_ranges, const vector<uint32_t>& init_values) | ||
{ | ||
for (uint32_t i = 0; i < init_values.size(); i++) | ||
{ | ||
CreateSemaphore(mesh_program, core_ranges, init_values[i]); | ||
} | ||
} | ||
|
||
bool cb_config_successful(std::shared_ptr<MeshDevice> mesh_device, MeshProgram &mesh_program, const DummyProgramMultiCBConfig & program_config){ | ||
bool pass = true; | ||
|
||
// Need to use old APIs to read since we cannot allocate a buffer in the reserved space we're trying | ||
// to read from | ||
vector<uint32_t> cb_config_vector; | ||
uint32_t cb_config_buffer_size = NUM_CIRCULAR_BUFFERS * UINT32_WORDS_PER_CIRCULAR_BUFFER_CONFIG * sizeof(uint32_t); | ||
|
||
for (const CoreRange& core_range : program_config.cr_set.ranges()) { | ||
for (const CoreCoord& core_coord : core_range) { | ||
auto sem_base_addrs_across_mesh = mesh_program.get_sem_base_addr(mesh_device, core_coord, CoreType::WORKER); | ||
uint32_t dev_idx = 0; | ||
for (auto device : mesh_device->get_devices()) { | ||
tt::tt_metal::detail::ReadFromDeviceL1(device, core_coord, | ||
sem_base_addrs_across_mesh.at(dev_idx), | ||
cb_config_buffer_size, cb_config_vector); | ||
|
||
uint32_t cb_addr = device->get_base_allocator_addr(HalMemType::L1); | ||
for (uint32_t i = 0; i < program_config.cb_config_vector.size(); i++) { | ||
const uint32_t index = program_config.cb_config_vector[i].cb_id * sizeof(uint32_t); | ||
const uint32_t cb_num_pages = program_config.cb_config_vector[i].num_pages; | ||
const uint32_t cb_size = cb_num_pages * program_config.cb_config_vector[i].page_size; | ||
const bool addr_match = cb_config_vector.at(index) == ((cb_addr) >> 4); | ||
const bool size_match = cb_config_vector.at(index + 1) == (cb_size >> 4); | ||
const bool num_pages_match = cb_config_vector.at(index + 2) == cb_num_pages; | ||
pass &= (addr_match and size_match and num_pages_match); | ||
|
||
cb_addr += cb_size; | ||
} | ||
dev_idx++; | ||
} | ||
} | ||
} | ||
return pass; | ||
} | ||
|
||
bool test_dummy_EnqueueProgram_with_cbs(std::shared_ptr<MeshDevice> mesh_device, uint8_t cq_id, DummyProgramMultiCBConfig& program_config) { | ||
MeshProgram mesh_program(mesh_device->get_devices().size()); | ||
|
||
initialize_dummy_circular_buffers(mesh_program, program_config.cr_set, program_config.cb_config_vector); | ||
initialize_dummy_kernels(mesh_program, program_config.cr_set); | ||
const bool is_blocking_op = false; | ||
EnqueueMeshProgram(cq_id, mesh_program, mesh_device, is_blocking_op); | ||
Finish(mesh_device, cq_id); | ||
// return true; | ||
return cb_config_successful(mesh_device, mesh_program, program_config); | ||
} | ||
|
||
bool test_dummy_EnqueueProgram_with_sems(std::shared_ptr<MeshDevice> mesh_device, uint8_t cq_id, MeshProgram& mesh_program, const DummyProgramConfig& program_config, const vector<vector<uint32_t>>& expected_semaphore_vals) { | ||
TT_ASSERT(program_config.cr_set.size() == expected_semaphore_vals.size()); | ||
|
||
bool are_all_semaphore_values_correct = true; | ||
|
||
const bool is_blocking_op = false; | ||
EnqueueMeshProgram(cq_id, mesh_program, mesh_device, is_blocking_op); | ||
Finish(mesh_device, cq_id); | ||
|
||
uint32_t expected_semaphore_vals_idx = 0; | ||
for (const CoreRange& core_range : program_config.cr_set.ranges()) | ||
{ | ||
const vector<uint32_t>& expected_semaphore_vals_for_core = expected_semaphore_vals[expected_semaphore_vals_idx]; | ||
TT_ASSERT(expected_semaphore_vals_for_core.size() == program_config.num_sems); | ||
expected_semaphore_vals_idx++; | ||
for (const CoreCoord& core_coord : core_range) | ||
{ | ||
auto sem_base_addrs_across_mesh = mesh_program.get_sem_base_addr(mesh_device, core_coord, CoreType::WORKER); | ||
uint32_t dev_idx = 0; | ||
for (auto device : mesh_device->get_devices()) { | ||
vector<uint32_t> semaphore_vals; | ||
uint32_t expected_semaphore_vals_for_core_idx = 0; | ||
const uint32_t semaphore_buffer_size = program_config.num_sems * hal.get_alignment(HalMemType::L1); | ||
tt::tt_metal::detail::ReadFromDeviceL1(device, core_coord, sem_base_addrs_across_mesh.at(dev_idx), semaphore_buffer_size, semaphore_vals); | ||
for (uint32_t i = 0; i < semaphore_vals.size(); i += (hal.get_alignment(HalMemType::L1) / sizeof(uint32_t))) | ||
{ | ||
const bool is_semaphore_value_correct = semaphore_vals[i] == expected_semaphore_vals_for_core[expected_semaphore_vals_for_core_idx]; | ||
expected_semaphore_vals_for_core_idx++; | ||
if (!is_semaphore_value_correct) | ||
{ | ||
are_all_semaphore_values_correct = false; | ||
} | ||
} | ||
dev_idx++; | ||
} | ||
} | ||
} | ||
|
||
return are_all_semaphore_values_correct; | ||
} | ||
|
||
bool test_dummy_EnqueueProgram_with_sems(std::shared_ptr<MeshDevice> mesh_device, uint8_t cq_id, const DummyProgramConfig& program_config) { | ||
MeshProgram mesh_program(mesh_device->get_devices().size()); | ||
|
||
vector<uint32_t> expected_semaphore_values; | ||
|
||
for (uint32_t initial_sem_value = 0; initial_sem_value < program_config.num_sems; initial_sem_value++) { | ||
expected_semaphore_values.push_back(initial_sem_value); | ||
} | ||
|
||
initialize_dummy_semaphores(mesh_program, program_config.cr_set, expected_semaphore_values); | ||
return test_dummy_EnqueueProgram_with_sems(mesh_device, cq_id, mesh_program, program_config, {expected_semaphore_values}); | ||
} | ||
|
||
TEST(MeshProgram, TestMeshProgramCB) { | ||
std::shared_ptr<MeshDevice> mesh_device = MeshDevice::create(MeshDeviceConfig(MeshShape{2, 4}, MeshType::RowMajor)); | ||
CoreRange cr({0, 0}, {0, 0}); | ||
CoreRangeSet cr_set({cr}); | ||
|
||
CBConfig cb_config = {.cb_id=0, .num_pages = 4, .page_size = 2048, .data_format = tt::DataFormat::Float16_b}; | ||
|
||
DummyProgramMultiCBConfig config = {.cr_set = cr_set, .cb_config_vector = {cb_config} }; | ||
EXPECT_EQ(true, test_dummy_EnqueueProgram_with_cbs(mesh_device, 0, config)); | ||
mesh_device->close_devices(); | ||
} | ||
|
||
TEST(MeshProgram, TestMeshProgramSem) { | ||
std::shared_ptr<MeshDevice> mesh_device = MeshDevice::create(MeshDeviceConfig(MeshShape{2, 4}, MeshType::RowMajor)); | ||
CoreCoord worker_grid_size = mesh_device->compute_with_storage_grid_size(); | ||
|
||
CoreRange cr({0, 0}, {worker_grid_size.x - 1, worker_grid_size.y - 1}); | ||
CoreRangeSet cr_set({cr}); | ||
|
||
DummyProgramConfig config = {.cr_set = cr_set, .num_sems = NUM_SEMAPHORES}; | ||
|
||
EXPECT_TRUE(test_dummy_EnqueueProgram_with_sems(mesh_device, 0, config)); | ||
mesh_device->close_devices(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
// SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
// | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include "mesh_program.hpp" | ||
#include "tt_metal/host_api.hpp" | ||
#include "tt_metal/detail/tt_metal.hpp" | ||
|
||
namespace tt::tt_metal { | ||
|
||
MeshProgram::MeshProgram(std::size_t num_devices) { | ||
this->programs.reserve(num_devices); | ||
for (int i = 0; i < num_devices; ++i) { | ||
this->programs.push_back(std::make_shared<Program>()); | ||
} | ||
} | ||
|
||
Program& MeshProgram::at(std::size_t device_index) { | ||
TT_ASSERT(device_index < this->program.size()); | ||
return *this->programs.at(device_index); | ||
} | ||
|
||
std::vector<uint32_t> MeshProgram::get_sem_base_addr(std::shared_ptr<MeshDevice> mesh_device, CoreCoord logical_core, CoreType core_type) const { | ||
return this->distributed_impl_( | ||
std::variant<std::function<uint32_t(Program&)>, std::function<uint32_t(Program&, Device*)>>( | ||
std::function<uint32_t(Program&, Device*)>( | ||
[logical_core, core_type](Program& program, Device* device) -> uint32_t { | ||
return program.get_sem_base_addr(device, logical_core, core_type); | ||
} | ||
) | ||
), | ||
mesh_device | ||
); | ||
} | ||
|
||
uint32_t CreateSemaphore( | ||
MeshProgram& mesh_program, | ||
const std::variant<CoreRange, CoreRangeSet> &core_spec, | ||
uint32_t initial_value, | ||
CoreType core_type) { | ||
return mesh_program.distributed_impl_( | ||
std::function<uint32_t(Program&)>( | ||
[&core_spec, initial_value, core_type] (Program& program) -> uint32_t { | ||
return CreateSemaphore(program, core_spec, initial_value, core_type); | ||
} | ||
) | ||
); | ||
} | ||
|
||
uint32_t CreateSemaphore( | ||
MeshProgram& mesh_program, | ||
const std::variant<CoreRange, CoreRangeSet> &core_spec, | ||
uint32_t initial_value, | ||
CoreType core_type, | ||
chip_id_t device_id) { | ||
return CreateSemaphore(mesh_program.at(device_id), core_spec, initial_value, core_type); | ||
} | ||
|
||
CBHandle CreateCircularBuffer( | ||
MeshProgram& mesh_program, | ||
const std::variant<CoreCoord, CoreRange, CoreRangeSet> &core_spec, | ||
const CircularBufferConfig &config) { | ||
return mesh_program.distributed_impl_( | ||
std::function<CBHandle(Program&)>( | ||
[&core_spec, &config] (Program& program) -> CBHandle { | ||
return CreateCircularBuffer(program, core_spec, config); | ||
} | ||
) | ||
); | ||
} | ||
|
||
CBHandle CreateCircularBuffer( | ||
MeshProgram& mesh_program, | ||
const std::variant<CoreCoord, CoreRange, CoreRangeSet> &core_spec, | ||
const CircularBufferConfig &config, | ||
chip_id_t device_id) { | ||
return CreateCircularBuffer(mesh_program.at(device_id), core_spec, config); | ||
} | ||
|
||
void SetRuntimeArgs( | ||
MeshProgram& mesh_program, | ||
KernelHandle kernel, | ||
const std::variant<CoreCoord, CoreRange, CoreRangeSet> &core_spec, | ||
const std::vector<uint32_t> &runtime_args) { | ||
mesh_program.distributed_impl_( | ||
std::function<void(Program&)>( | ||
[kernel, &core_spec, &runtime_args] (Program& program) -> void { | ||
return SetRuntimeArgs(program, kernel, core_spec, runtime_args); | ||
} | ||
) | ||
); | ||
} | ||
|
||
void SetRuntimeArgs( | ||
MeshProgram& mesh_program, | ||
KernelHandle kernel, | ||
const std::variant<CoreCoord, CoreRange, CoreRangeSet> &core_spec, | ||
const std::vector<uint32_t> &runtime_args, | ||
chip_id_t device_id) { | ||
SetRuntimeArgs(mesh_program.at(device_id), kernel, core_spec, runtime_args); | ||
} | ||
|
||
KernelHandle CreateKernel( | ||
MeshProgram& mesh_program, | ||
const std::string &file_name, | ||
const std::variant<CoreCoord, CoreRange, CoreRangeSet> &core_spec, | ||
const std::variant<DataMovementConfig, ComputeConfig, EthernetConfig> &config) { | ||
return mesh_program.distributed_impl_( | ||
std::function<KernelHandle(Program&)>( | ||
[&file_name, &core_spec, &config] (Program& program) -> KernelHandle { | ||
return CreateKernel(program, file_name, core_spec, config); | ||
} | ||
) | ||
); | ||
} | ||
|
||
KernelHandle CreateKernel( | ||
MeshProgram& mesh_program, | ||
const std::string &file_name, | ||
const std::variant<CoreCoord, CoreRange, CoreRangeSet> &core_spec, | ||
const std::variant<DataMovementConfig, ComputeConfig, EthernetConfig> &config, | ||
chip_id_t device_id) { | ||
return CreateKernel(mesh_program.at(device_id), file_name, core_spec, config); | ||
} | ||
|
||
void EnqueueMeshProgram( | ||
uint8_t cq_id, MeshProgram& mesh_program, std::shared_ptr<MeshDevice> mesh_device, bool blocking) { | ||
mesh_program.distribute_to_mesh_device_impl_( | ||
std::function<void(Program&, Device*)>( | ||
[cq_id, blocking] (Program& program, Device* device) -> void { | ||
EnqueueProgram(device->command_queue(cq_id), program, blocking); | ||
} | ||
), | ||
mesh_device | ||
); | ||
} | ||
|
||
void Finish(std::shared_ptr<MeshDevice> mesh_device, uint8_t cq_id) { | ||
for (auto device : mesh_device->get_devices()) { | ||
Finish(device->command_queue(cq_id)); | ||
} | ||
} | ||
|
||
} |
Oops, something went wrong.