-
Notifications
You must be signed in to change notification settings - Fork 113
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#0: Yolov11 Demo and Evaluation Code added
- Loading branch information
1 parent
cd302b2
commit 5ac5157
Showing
2 changed files
with
646 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
# SPDX-FileCopyrightText: © 2025 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from pathlib import Path | ||
import os | ||
import cv2 | ||
import sys | ||
import ttnn | ||
import torch | ||
import pytest | ||
import torch.nn as nn | ||
from loguru import logger | ||
from datetime import datetime | ||
from models.utility_functions import disable_persistent_kernel_cache | ||
from models.experimental.yolov11.reference import yolov11 | ||
from models.experimental.yolov11.reference.yolov11 import attempt_load | ||
from models.experimental.yolov11.tt import ttnn_yolov11 | ||
from models.experimental.yolov11.tt.model_preprocessing import ( | ||
create_yolov11_input_tensors, | ||
create_yolov11_model_parameters, | ||
) | ||
from models.experimental.yolov11.demo.demo_utils import LoadImages, preprocess, postprocess | ||
|
||
try: | ||
sys.modules["ultralytics"] = yolov11 | ||
sys.modules["ultralytics.nn.tasks"] = yolov11 | ||
sys.modules["ultralytics.nn.modules.conv"] = yolov11 | ||
sys.modules["ultralytics.nn.modules.block"] = yolov11 | ||
sys.modules["ultralytics.nn.modules.head"] = yolov11 | ||
except KeyError: | ||
print("models.experimental.yolov11.reference.yolov11 not found.") | ||
|
||
|
||
def save_yolo_predictions_by_model(result, save_dir, image_path, model_name): | ||
model_save_dir = os.path.join(save_dir, model_name) | ||
os.makedirs(model_save_dir, exist_ok=True) | ||
|
||
image = cv2.imread(image_path) | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
|
||
if model_name == "torch_model": | ||
bounding_box_color, label_color = (0, 255, 0), (0, 255, 0) | ||
else: | ||
bounding_box_color, label_color = (255, 0, 0), (255, 0, 0) | ||
|
||
boxes = result["boxes"]["xyxy"] | ||
scores = result["boxes"]["conf"] | ||
classes = result["boxes"]["cls"] | ||
names = result["names"] | ||
|
||
for box, score, cls in zip(boxes, scores, classes): | ||
x1, y1, x2, y2 = map(int, box) | ||
label = f"{names[int(cls)]} {score.item():.2f}" | ||
cv2.rectangle(image, (x1, y1), (x2, y2), bounding_box_color, 3) | ||
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_color, 2) | ||
|
||
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | ||
|
||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | ||
output_name = f"prediction_{timestamp}.jpg" | ||
output_path = os.path.join(model_save_dir, output_name) | ||
cv2.imwrite(output_path, image) | ||
print(f"Predictions saved to {output_path}") | ||
|
||
|
||
@pytest.mark.parametrize("device_params", [{"l1_small_size": 32768}], indirect=True) | ||
@pytest.mark.parametrize( | ||
"source, model_type,resolution", | ||
[ | ||
# 224*224 | ||
# ("models/experimental/yolov11/demo/images/cycle_girl.jpg", "torch_model", [3, 224, 224]), | ||
# ("models/experimental/yolov11/demo/images/cycle_girl.jpg", "tt_model", [3, 224, 224]), | ||
# ("models/experimental/yolov11/demo/images/dog.jpg", "torch_model", [3, 224, 224]), | ||
# ("models/experimental/yolov11/demo/images/dog.jpg", "tt_model", [3, 224, 224]), | ||
# 640*640 | ||
# ("models/experimental/yolov11/demo/images/cycle_girl.jpg", "torch_model", [3, 640, 640]), | ||
("models/experimental/yolov11/demo/images/cycle_girl.jpg", "tt_model", [3, 640, 640]), | ||
# ("models/experimental/yolov11/demo/images/dog.jpg", "torch_model", [3, 640, 640]), | ||
# ("models/experimental/yolov11/demo/images/dog.jpg", "tt_model", [3, 640, 640]), | ||
], | ||
) | ||
def test_demo(device, source, model_type, resolution): | ||
disable_persistent_kernel_cache() | ||
state_dict = attempt_load("yolo11n.pt", map_location="cpu").state_dict() | ||
model = yolov11.YoloV11() | ||
ds_state_dict = {k: v for k, v in state_dict.items()} | ||
new_state_dict = {} | ||
for (name1, parameter1), (name2, parameter2) in zip(model.state_dict().items(), ds_state_dict.items()): | ||
if isinstance(parameter2, torch.FloatTensor): | ||
new_state_dict[name1] = parameter2 | ||
model.load_state_dict(new_state_dict) | ||
if model_type == "torch_model": | ||
model.eval() | ||
logger.info("Inferencing using Torch Model") | ||
else: | ||
torch_input, ttnn_input = create_yolov11_input_tensors( | ||
device, input_channels=resolution[0], input_height=resolution[1], input_width=resolution[2] | ||
) | ||
parameters = create_yolov11_model_parameters(model, torch_input, device=device) | ||
model = ttnn_yolov11.YoloV11(device, parameters) | ||
logger.info("Inferencing using ttnn Model") | ||
|
||
save_dir = "models/experimental/yolov11/demo/runs" | ||
dataset = LoadImages(path=source) | ||
model_save_dir = os.path.join(save_dir, model_type) | ||
os.makedirs(model_save_dir, exist_ok=True) | ||
|
||
names = { | ||
0: "person", | ||
1: "bicycle", | ||
2: "car", | ||
3: "motorcycle", | ||
4: "airplane", | ||
5: "bus", | ||
6: "train", | ||
7: "truck", | ||
8: "boat", | ||
9: "traffic light", | ||
10: "fire hydrant", | ||
11: "stop sign", | ||
12: "parking meter", | ||
13: "bench", | ||
14: "bird", | ||
15: "cat", | ||
16: "dog", | ||
17: "horse", | ||
18: "sheep", | ||
19: "cow", | ||
20: "elephant", | ||
21: "bear", | ||
22: "zebra", | ||
23: "giraffe", | ||
24: "backpack", | ||
25: "umbrella", | ||
26: "handbag", | ||
27: "tie", | ||
28: "suitcase", | ||
29: "frisbee", | ||
30: "skis", | ||
31: "snowboard", | ||
32: "sports ball", | ||
33: "kite", | ||
34: "baseball bat", | ||
35: "baseball glove", | ||
36: "skateboard", | ||
37: "surfboard", | ||
38: "tennis racket", | ||
39: "bottle", | ||
40: "wine glass", | ||
41: "cup", | ||
42: "fork", | ||
43: "knife", | ||
44: "spoon", | ||
45: "bowl", | ||
46: "banana", | ||
47: "apple", | ||
48: "sandwich", | ||
49: "orange", | ||
50: "broccoli", | ||
51: "carrot", | ||
52: "hot dog", | ||
53: "pizza", | ||
54: "donut", | ||
55: "cake", | ||
56: "chair", | ||
57: "couch", | ||
58: "potted plant", | ||
59: "bed", | ||
60: "dining table", | ||
61: "toilet", | ||
62: "TV", | ||
63: "laptop", | ||
64: "mouse", | ||
65: "remote", | ||
66: "keyboard", | ||
67: "cell phone", | ||
68: "microwave", | ||
69: "oven", | ||
70: "toaster", | ||
71: "sink", | ||
72: "refrigerator", | ||
73: "book", | ||
74: "clock", | ||
75: "vase", | ||
76: "scissors", | ||
77: "teddy bear", | ||
78: "hair drier", | ||
79: "toothbrush", | ||
} | ||
|
||
for batch in dataset: | ||
paths, im0s, s = batch | ||
im = preprocess(im0s, resolution) | ||
if model_type == "torch_model": | ||
preds = model(im) | ||
else: | ||
img = torch.permute(im, (0, 2, 3, 1)) | ||
img = img.reshape( | ||
1, | ||
1, | ||
img.shape[0] * img.shape[1] * img.shape[2], | ||
img.shape[3], | ||
) | ||
ttnn_im = ttnn.from_torch(img, layout=ttnn.TILE_LAYOUT, dtype=ttnn.bfloat8_b) | ||
preds = model(x=ttnn_im) | ||
preds = ttnn.to_torch(preds, dtype=torch.float32) | ||
results = postprocess(preds, im, im0s, batch, names)[0] | ||
save_yolo_predictions_by_model(results, save_dir, source, model_type) | ||
print("Inference done") |
Oops, something went wrong.